evaluator.py 23.3 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import random
Leo Gao's avatar
Leo Gao committed
2
import itertools
FarzanehNakhaee's avatar
FarzanehNakhaee committed
3
import json
lintangsutawika's avatar
lintangsutawika committed
4
import collections
FarzanehNakhaee's avatar
FarzanehNakhaee committed
5
import sys
lintangsutawika's avatar
lintangsutawika committed
6

7
8
import torch

9
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
10
11

import lm_eval.api
12
import lm_eval.tasks
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.models
lintangsutawika's avatar
lintangsutawika committed
14
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
15
import lm_eval.api.registry
lintangsutawika's avatar
lintangsutawika committed
16

lintangsutawika's avatar
lintangsutawika committed
17
18
19
20
from lm_eval.utils import (
    positional_deprecated,
    run_task_tests,
    make_table,
21
    create_iterator,
lintangsutawika's avatar
lintangsutawika committed
22
23
    get_git_commit_hash,
)
24

lintangsutawika's avatar
lintangsutawika committed
25
26
from lm_eval.logger import eval_logger

Fabrizio Milo's avatar
Fabrizio Milo committed
27

28
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
29
30
31
32
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
33
    num_fewshot=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
34
    batch_size=None,
35
    max_batch_size=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
36
    device=None,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    use_cache=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
38
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
39
40
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
41
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
42
43
    write_out: bool = False,
    log_samples: bool = True,
Fabrizio Milo's avatar
Fabrizio Milo committed
44
):
45
    """Instantiate and evaluate a model on a list of tasks.
46

47
48
49
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
50
        String arguments for each model class, see LM.create_from_arg_string.
51
52
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
53
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
54
55
    :param num_fewshot: int
        Number of examples in few-shot context
56
    :param batch_size: int or str, optional
57
        Batch size for model
58
59
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
60
    :param device: str, optional
61
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
62
63
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
64
65
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
66
67
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
68
69
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
70
    :param write_out: bool
71
72
73
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
74
    :return
75
        Dictionary of results
76
    """
77
    random.seed(0)
78
    np.random.seed(1234)
79
80
81
    torch.manual_seed(
        1234
    )  # TODO: this may affect training runs that are run with evaluation mid-run.
82

83
84
85
    assert (
        tasks != []
    ), "No tasks specified, or no tasks found. Please verify the task names."
86
87

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
88
89
        if model_args is None:
            model_args = ""
lintangsutawika's avatar
lintangsutawika committed
90
        lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
lintangsutawika's avatar
lintangsutawika committed
91
92
93
94
95
96
            model_args,
            {
                "batch_size": batch_size,
                "max_batch_size": max_batch_size,
                "device": device,
            },
Fabrizio Milo's avatar
Fabrizio Milo committed
97
        )
98
    else:
99
        assert isinstance(model, lm_eval.api.model.LM)
100
        lm = model
101

haileyschoelkopf's avatar
haileyschoelkopf committed
102
103
104
105
106
107
108
109
110
111
    if use_cache is not None:
        print(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
            + "_rank" + str(lm.rank) + ".db",
        )

112
113
    task_dict = lm_eval.tasks.get_task_dict(tasks)
    for task_name in task_dict.keys():
lintangsutawika's avatar
lintangsutawika committed
114
115
116
        task_obj = task_dict[task_name]
        if type(task_obj) == tuple:
            group, task_obj = task_obj
117
118
            if task_obj is None:
                continue
lintangsutawika's avatar
lintangsutawika committed
119
120

        config = task_obj._config
121
122
123
124
125
126
127
        if num_fewshot is not None:
            if config["num_fewshot"] > 0:
                default_num_fewshot = config["num_fewshot"]
                eval_logger.warning(
                    f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                )

Lintang Sutawika's avatar
Lintang Sutawika committed
128
            task_obj._config["num_fewshot"] = num_fewshot
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
129

Stephen Hogg's avatar
Stephen Hogg committed
130
    if check_integrity:
131
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
132

133
134
135
136
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
137
        bootstrap_iters=bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
138
        decontamination_ngrams_path=decontamination_ngrams_path,
139
        write_out=write_out,
140
        log_samples=log_samples,
141
    )
142

143
144
145
    if lm.rank == 0:
        # add info about the model and few shot config
        results["config"] = {
lintangsutawika's avatar
lintangsutawika committed
146
147
148
            "model": model
            if isinstance(model, str)
            else model.model.config._name_or_path,
149
150
            "model_args": model_args,
            "batch_size": batch_size,
lintangsutawika's avatar
lintangsutawika committed
151
152
153
            "batch_sizes": list(lm.batch_sizes.values())
            if hasattr(lm, "batch_sizes")
            else [],
154
            "device": device,
haileyschoelkopf's avatar
haileyschoelkopf committed
155
            "use_cache": use_cache,
156
157
158
            "limit": limit,
            "bootstrap_iters": bootstrap_iters,
        }
159
        results["git_hash"] = get_git_commit_hash()
160
161
162
        return results
    else:
        return None
163

Leo Gao's avatar
Leo Gao committed
164

165
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
166

Fabrizio Milo's avatar
Fabrizio Milo committed
167

168
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
169
170
171
172
def evaluate(
    lm,
    task_dict,
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
173
    bootstrap_iters: int = 100000,
Fabrizio Milo's avatar
Fabrizio Milo committed
174
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
175
176
    write_out: bool = False,
    log_samples: bool = True,
Fabrizio Milo's avatar
Fabrizio Milo committed
177
):
178
179
180
181
182
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
183
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
184
185
186
187
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
188
    :param write_out: bool
189
190
191
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
192
193
194
    :return
        Dictionary of results
    """
195

lintangsutawika's avatar
lintangsutawika committed
196
    # decontaminate = decontamination_ngrams_path is not None
197

198
    # stores the final result for each task, for each metric/filter pair.
Leo Gao's avatar
Leo Gao committed
199
    results = collections.defaultdict(dict)
200
    # Tracks each task's version.
Leo Gao's avatar
Leo Gao committed
201
    versions = collections.defaultdict(dict)
202
    # Tracks the YAML configs of all chosen tasks.
203
    configs = collections.defaultdict(dict)
204
    # logs info about each document evaluated.
lintangsutawika's avatar
lintangsutawika committed
205
    samples = collections.defaultdict(list)
206
    # tracks all Instances/requests a model must generate output on.
Leo Gao's avatar
Leo Gao committed
207
    requests = collections.defaultdict(list)
208
    # Aggregated task scores presented with groups
209
    results_agg = collections.defaultdict(dict)
210
    # Aggregated groups scores only
lintangsutawika's avatar
lintangsutawika committed
211
    groups_agg = collections.defaultdict(dict)
212
213
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
214
    padding_requests = collections.defaultdict(int)
lintangsutawika's avatar
lintangsutawika committed
215
    # store the hierarchy to do proper ordering
lintangsutawika's avatar
lintangsutawika committed
216
    task_hierarchy = collections.defaultdict(list)
lintangsutawika's avatar
lintangsutawika committed
217
    # store the ordering of tasks and groups
lintangsutawika's avatar
lintangsutawika committed
218
    task_order = collections.defaultdict(int)
lintangsutawika's avatar
lintangsutawika committed
219
    task_group_alias = collections.defaultdict(dict)
220

221
    # get lists of each type of request
222
    for task_name, task in task_dict.items():
223
        if type(task) == tuple:
lintangsutawika's avatar
lintangsutawika committed
224
225
            group_name, task = task
            task_hierarchy[group_name].append(task_name)
226
            versions[group_name] = "N/A"
lintangsutawika's avatar
lintangsutawika committed
227

228
        else:
lintangsutawika's avatar
lintangsutawika committed
229
230
231
232
            task_hierarchy[task_name] = []

        if task is None:
            continue
233

Leo Gao's avatar
Leo Gao committed
234
        versions[task_name] = task.VERSION
haileyschoelkopf's avatar
haileyschoelkopf committed
235
236
        configs[task_name] = dict(task.dump_config())

lintangsutawika's avatar
lintangsutawika committed
237
238
239
        if "task_alias" in configs[task_name]:
            task_group_alias[task_name] = configs[task_name]["task_alias"]

lintangsutawika's avatar
lintangsutawika committed
240
241
242
243
244
        if ("group_alias" in configs[task_name]) and (
            group_name not in task_group_alias
        ):
            task_group_alias[group_name] = configs[task_name]["group_alias"]

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
245
        if limit is not None:
246
247
248
249
250
251
            if task.has_test_docs():
                task_docs = task.test_docs()
            elif task.has_validation_docs():
                task_docs = task.validation_docs()
            else:
                raise RuntimeError("Task has neither test_docs nor validation_docs")
252
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
253

254
255
        task.build_all_requests(limit=limit, rank=lm.rank, world_size=lm.world_size)

haileyschoelkopf's avatar
haileyschoelkopf committed
256
257
258
259
260
261
262
        eval_logger.info(
            f"Task: {task_name}; number of requests on this rank: {len(task.instances)}"
        )

        if write_out:
            for inst in task.instances:
                # print the prompt for the first few documents
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
263
264
                if inst.doc_id < 1:
                    eval_logger.info(
haileyschoelkopf's avatar
haileyschoelkopf committed
265
266
                        f"Task: {task_name}; document {inst.doc_id}; context prompt (starting on next line):\
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"
haileyschoelkopf's avatar
haileyschoelkopf committed
267
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
268
                    eval_logger.info(f"Request: {str(inst)}")
haileyschoelkopf's avatar
haileyschoelkopf committed
269

270
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
271
272
        reqtype = (
            "loglikelihood"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
273
            if task.OUTPUT_TYPE == "multiple_choice"
lintangsutawika's avatar
lintangsutawika committed
274
275
276
            else task.OUTPUT_TYPE
        )  # TODO: this is hacky, fix in task.py
        requests[reqtype].extend(task.instances)
277
278

        if lm.world_size > 1:
279
280
281
282
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
283

284
            # compute number of pseudobatches to pad with (FSDP/DDP require even batches among ranks)
285
            numpad = max(gathered_item) - gathered_item[lm.rank]
286
            padding_requests[task.OUTPUT_TYPE] += numpad
287

288
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
289
290
    # execute each type of request
    for reqtype, reqs in requests.items():
lintangsutawika's avatar
lintangsutawika committed
291
        eval_logger.info("Running {} requests".format(reqtype))
292
293
294
295
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
296

297
298
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
299
300
                cloned_reqs.extend([req] * req.repeats)

301
302
303
304
305
306
307
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

308
309
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
310

311
312
313
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_name, task in task_dict.items():
314
315
        if type(task) == tuple:
            group, task = task
316
317
            if task is None:
                continue
318
319
320
        task.apply_filters()

    ### Collect values of metrics on all datapoints ###
Leo Gao's avatar
Leo Gao committed
321
322
323
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
324
    for task_name, task in task_dict.items():
325
326
        if type(task) == tuple:
            group, task = task
327
328
            if task is None:
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
329
330
        # TODO: make it possible to use a different metric per filter
        # iterate over different filters used
331
        for key in task.instances[0].filtered_resps.keys():
332
333
334
335
            doc_iterator = (
                itertools.islice(
                    enumerate(task.test_docs()), lm.rank, limit, lm.world_size
                )
lintangsutawika's avatar
lintangsutawika committed
336
                if task.has_test_docs()
337
338
339
340
                else itertools.islice(
                    enumerate(task.validation_docs()), lm.rank, limit, lm.world_size
                )
            )
341
            for doc_id, doc in doc_iterator:
342
343
                # subset instances to only this document id ; sort by idx
                requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
344
                requests.sort(key=lambda x: x.idx)
lintangsutawika's avatar
lintangsutawika committed
345
346
347
                metrics = task.process_results(
                    doc, [req.filtered_resps[key] for req in requests]
                )
348
349
350
351
352
353
354
355
356
357
358
359
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
                        "filtered_resps": [req.filtered_resps[key] for req in requests],
                    }
                    example.update(metrics)
                    samples[task_name].append(example)
360
361
362
                for metric, value in metrics.items():
                    vals[(task_name, key, metric)].append(value)

363
    if lm.world_size > 1:
364
        # if multigpu, then gather data across all ranks
365
366
367
368
369
370
371
372
        # first gather logged samples across all ranks
        for task_name, task_samples in list(samples.items()):
            full_samples = [None] * lm.world_size
            torch.distributed.all_gather_object(full_samples, task_samples)

            samples[task_name] = list(itertools.chain.from_iterable(full_samples))

        # then collect metrics across all ranks
373
374
        vals_torch = collections.defaultdict(list)
        for (task_name, key, metric), items in vals.items():
375
            numitem = 0
376
            if type(items[0]) == tuple:
377
378
                numitem = len(items[0])

379
380
381
382
            if isinstance(items[0], (str, list)):
                # handle the string case
                gathered_items = [None] * lm.accelerator.num_processes
                torch.distributed.all_gather_object(gathered_items, items)
383

384
                gathered_item = list(itertools.chain.from_iterable(gathered_items))
385
            else:
386
387
388
389
390
391
392
393
394
395
                # distributed gather requires all ranks to have same dimensions
                # so we pad out with float32 min value
                pad_value = torch.finfo(torch.float32).min
                metrics_tensor = torch.tensor(items, device=lm.device)

                original_dtype = metrics_tensor.dtype  # store original dtype
                torch_device_tensor = lm.accelerator.pad_across_processes(
                    metrics_tensor.to(torch.float32), pad_index=pad_value
                )
                gathered_item = lm.accelerator.gather(torch_device_tensor)
396

397
398
399
400
401
402
403
404
405
406
407
                if numitem > 0:
                    gathered_filtered = gathered_item[gathered_item[:, 0] != pad_value]
                else:
                    gathered_filtered = gathered_item[gathered_item != pad_value]

                gathered_item = (
                    gathered_filtered.to(original_dtype).cpu().detach().numpy().tolist()
                )
                # reconvert if we were passed a tuple of values
                if numitem > 0:
                    gathered_item = [tuple(g) for g in gathered_item]
408

409
410
            if lm.rank == 0:
                vals_torch[(task_name, key, metric)] = gathered_item
411

412
        vals = vals_torch
413

414
    if lm.rank == 0:
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

        ### Get task ordering for correct sample-wide aggregation
        group_to_task = {}
        for group in task_hierarchy.keys():
            if group not in task_order:
                task_order[group] = 0

            if len(task_hierarchy[group]) > 0:
                group_to_task[group] = task_hierarchy[group].copy()

            for task in task_hierarchy[group]:

                if task in task_order:
                    task_order[task] += 1
                else:
                    task_order[task] = 1 + task_order[group]

                if task in task_hierarchy:
                    group_to_task[group].remove(task)
                    group_to_task[group].extend(task_hierarchy[task])

        task_to_group = {}
        for group in group_to_task:
            for task in group_to_task[group]:
                if task in task_to_group:
                    task_to_group[task].append(group)
                else:
                    task_to_group[task] = [group]
lintangsutawika's avatar
lintangsutawika committed
443

444
445
446
447
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
        for (task_name, key, metric), items in vals.items():
            task = task_dict[task_name]
lintangsutawika's avatar
lintangsutawika committed
448
449
            metric_key = metric + "," + key

450
            if type(task) == tuple:
lintangsutawika's avatar
lintangsutawika committed
451
452
453
454
                group_name, task = task
            else:
                group_name = None

455
            agg_fn = task.aggregation()[metric]
456
457
            results[task_name][metric_key] = agg_fn(items)
            results[task_name]["samples"] = len(items)
lintangsutawika's avatar
lintangsutawika committed
458

459
460
            # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
            # so we run them less iterations. still looking for a cleaner way to do this
haileyschoelkopf's avatar
haileyschoelkopf committed
461
            if bootstrap_iters > 0:
haileyschoelkopf's avatar
haileyschoelkopf committed
462
463
                stderr = lm_eval.api.metrics.stderr_for_metric(
                    metric=task.aggregation()[metric],
haileyschoelkopf's avatar
haileyschoelkopf committed
464
                    bootstrap_iters=min(bootstrap_iters, 100)
haileyschoelkopf's avatar
haileyschoelkopf committed
465
466
467
                    if metric in ["bleu", "chrf", "ter"]
                    else bootstrap_iters,
                )
468

haileyschoelkopf's avatar
haileyschoelkopf committed
469
470
                if stderr is not None:
                    results[task_name][metric + "_stderr" + "," + key] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
471

lintangsutawika's avatar
lintangsutawika committed
472
        if bool(results):
473
474

            for group, task_list in reversed(task_hierarchy.items()):
475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
                if task_list == []:
                    total_size = results[group]["samples"]
                else:
                    total_size = 0

                    for task in task_list:
                        metrics = results[task]

                        current_size = metrics.pop("samples")
                        # TODO: There should be a way for users
                        #       to toggle between weighted and
                        #       unweighted averaging
                        # For unweighted averaging, use:
                        #     current_size = 1

                        all_stderr = []
                        for metric in [
                            key for key in metrics.keys() if "_stderr" not in key
                        ]:

                            stderr = "_stderr,".join(metric.split(","))
                            stderr_score = results[task][stderr]
lintangsutawika's avatar
lintangsutawika committed
498
                            var_score = stderr_score**2
499
500
501
502
503
504
505
506
507
508
509
510
                            metric_score = results[task][metric]

                            all_stderr.append(stderr)

                            if metric in results[group]:
                                results[group][metric] = (
                                    results[group][metric] * total_size
                                    + metric_score * current_size
                                ) / (total_size + current_size)
                                # $$s_z^2 = \frac{(n-1) s_x^2 + (m-1) s_y^2}{n+m-1} + \frac{nm(\bar x - \bar y)^2}{(n+m)(n+m-1)}.$$
                                results[group][stderr] = (
                                    (total_size - 1) * results[group][stderr]
lintangsutawika's avatar
lintangsutawika committed
511
                                    + (current_size - 1) * var_score
512
513
514
515
516
517
518
519
520
521
                                ) / (
                                    total_size + current_size - 1
                                ) + total_size * current_size / (
                                    (total_size + current_size)
                                    * (total_size + current_size - 1)
                                ) * (
                                    results[group][metric] - metric_score
                                ) ** 2
                            else:
                                results[group][metric] = metric_score
lintangsutawika's avatar
lintangsutawika committed
522
                                results[group][stderr] = var_score
523
524
525
526
527

                        total_size += current_size

                    for stderr in all_stderr:
                        results[group][stderr] = np.sqrt(results[group][stderr])
lintangsutawika's avatar
lintangsutawika committed
528

529
                results[group]["samples"] = total_size
lintangsutawika's avatar
lintangsutawika committed
530

lintangsutawika's avatar
lintangsutawika committed
531
        def print_tasks(task_hierarchy, task_order, task_version, task_group_alias):
532
533
534
535
536

            results_agg = collections.defaultdict(dict)
            groups_agg = collections.defaultdict(dict)
            for group_name, task_list in task_hierarchy.items():

lintangsutawika's avatar
lintangsutawika committed
537
                order = task_order[group_name]
lintangsutawika's avatar
lintangsutawika committed
538
                results_agg[group_name] = results[group_name].copy()
lintangsutawika's avatar
lintangsutawika committed
539
                results_agg[group_name]["tab"] = order
540
541

                if (order < max(task_order.values())) and (len(task_list) > 0):
lintangsutawika's avatar
lintangsutawika committed
542
                    groups_agg[group_name] = results[group_name].copy()
lintangsutawika's avatar
lintangsutawika committed
543
                    groups_agg[group_name]["tab"] = order
544
545
546
547
548
549
550
551
552

                if task_list != []:
                    for task in sorted(task_list):
                        if task in task_hierarchy:
                            _task_hierarchy = {task: task_hierarchy[task]}
                        else:
                            _task_hierarchy = {task: []}

                        _results_agg, _groups_agg, task_version = print_tasks(
lintangsutawika's avatar
lintangsutawika committed
553
                            _task_hierarchy, task_order, task_version, task_group_alias
554
555
556
557
558
559
560
561
                        )

                        results_agg = {**results_agg, **_results_agg}
                        groups_agg = {**groups_agg, **_groups_agg}

            return results_agg, groups_agg, task_version

        results_agg, groups_agg, versions = print_tasks(
lintangsutawika's avatar
lintangsutawika committed
562
            task_hierarchy, task_order, versions, task_group_alias
563
        )
lintangsutawika's avatar
lintangsutawika committed
564

lintangsutawika's avatar
lintangsutawika committed
565
566
567
568
        _results_agg = collections.defaultdict(dict)
        _versions = collections.defaultdict(dict)
        for task in results_agg:
            task_results = results_agg[task]
lintangsutawika's avatar
lintangsutawika committed
569
570
571
572

            if "samples" in task_results:
                task_results.pop("samples")

lintangsutawika's avatar
lintangsutawika committed
573
            tab_string = ""
lintangsutawika's avatar
lintangsutawika committed
574
575
            if "tab" in task_results:
                tab = task_results.pop("tab")
lintangsutawika's avatar
lintangsutawika committed
576
                tab_string = " " * tab + "- " if tab > 0 else ""
lintangsutawika's avatar
lintangsutawika committed
577
578
579

            if task in task_group_alias:
                task_alias = task_group_alias[task]
lintangsutawika's avatar
lintangsutawika committed
580
581
                _results_agg[tab_string + task_alias] = task_results
                _versions[tab_string + task_alias] = versions[task]
lintangsutawika's avatar
lintangsutawika committed
582
            else:
lintangsutawika's avatar
lintangsutawika committed
583
584
                _results_agg[tab_string + task] = task_results
                _versions[tab_string + task] = versions[task]
lintangsutawika's avatar
lintangsutawika committed
585
586
587
588
589
590
        results_agg = _results_agg
        versions = _versions

        _groups_agg = collections.defaultdict(dict)
        for group in groups_agg:
            group_results = groups_agg[group]
lintangsutawika's avatar
lintangsutawika committed
591
592
593
594

            if "samples" in group_results:
                group_results.pop("samples")

lintangsutawika's avatar
lintangsutawika committed
595
            tab_string = ""
lintangsutawika's avatar
lintangsutawika committed
596
597
            if "tab" in group_results:
                tab = group_results.pop("tab")
lintangsutawika's avatar
lintangsutawika committed
598
                tab_string = " " * tab + "- " if tab > 0 else ""
lintangsutawika's avatar
lintangsutawika committed
599
600
601

            if group in task_group_alias:
                group_alias = task_group_alias[group]
lintangsutawika's avatar
lintangsutawika committed
602
                _groups_agg[tab_string + group_alias] = group_results
lintangsutawika's avatar
lintangsutawika committed
603
            else:
lintangsutawika's avatar
lintangsutawika committed
604
                _groups_agg[tab_string + group] = group_results
lintangsutawika's avatar
lintangsutawika committed
605
606
        groups_agg = _groups_agg

607
        results_dict = {
608
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
609
            **({"groups": dict(groups_agg.items())} if bool(groups_agg) else {}),
610
611
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
612
        }
613
614
615
616
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
617

618
619
    else:
        return None