evaluator.py 11.9 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Stephen Hogg's avatar
Stephen Hogg committed
3
import pathlib
Leo Gao's avatar
Leo Gao committed
4
import random
Leo Gao's avatar
Leo Gao committed
5
import lm_eval.metrics
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
9
import lm_eval.decontamination
10
import numpy as np
Stephen Hogg's avatar
Stephen Hogg committed
11
from lm_eval.utils import positional_deprecated, run_task_tests
researcher2's avatar
researcher2 committed
12
from lm_eval.decontamination.decontaminate import get_train_overlap
13

Fabrizio Milo's avatar
Fabrizio Milo committed
14

15
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
    num_fewshot=0,
    batch_size=None,
    device=None,
    no_cache=False,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    check_integrity=False,
    decontamination_ngrams_path=None,
):
30

31
    """Instantiate and evaluate a model on a list of tasks.
32

33
34
35
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
36
        String arguments for each model class, see LM.create_from_arg_string.
37
38
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
39
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
40
41
42
43
44
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
45
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
46
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
47
        Whether or not to cache
48
49
50
51
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
52
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
53
        Dictionary of custom task descriptions of the form: `task_name: description`
Stephen Hogg's avatar
Stephen Hogg committed
54
55
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
56
    :return
57
        Dictionary of results
58
    """
59
60
61
    random.seed(1234)
    np.random.seed(1234)

62
63
64
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
65
66
67
68
69
        if model_args is None:
            model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(
            model_args, {"batch_size": batch_size, "device": device}
        )
70
71
72
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
73
74

    if not no_cache:
75
        lm = lm_eval.base.CachingLM(
Fabrizio Milo's avatar
Fabrizio Milo committed
76
77
78
79
80
81
            lm,
            "lm_cache/"
            + model
            + "_"
            + model_args.replace("=", "-").replace(",", "_").replace("/", "-")
            + ".db",
82
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
83

84
    task_dict = lm_eval.tasks.get_task_dict(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
85

Stephen Hogg's avatar
Stephen Hogg committed
86
    if check_integrity:
87
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
88

89
90
91
92
93
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
94
        description_dict=description_dict,
Fabrizio Milo's avatar
Fabrizio Milo committed
95
        decontamination_ngrams_path=decontamination_ngrams_path,
96
    )
97
98
99
100
101
102
103
104
105
106

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
107
        "bootstrap_iters": bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
108
        "description_dict": description_dict,
109
110
111
    }

    return results
Leo Gao's avatar
Leo Gao committed
112

Fabrizio Milo's avatar
Fabrizio Milo committed
113

114
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
115

Fabrizio Milo's avatar
Fabrizio Milo committed
116

117
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
118
119
120
121
122
123
124
125
126
127
def evaluate(
    lm,
    task_dict,
    provide_description=None,
    num_fewshot=0,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    decontamination_ngrams_path=None,
):
128
129
130
131
132
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
133
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
134
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
135
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
136
137
138
139
140
141
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
142
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
143
        Dictionary of custom task descriptions of the form: `task_name: description`
144
145
146
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
147
148
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

149
150
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
151
152
    if provide_description is not None:
        # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
153
154
155
        print(
            "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
        )
156

Leo Gao's avatar
Leo Gao committed
157
    decontaminate = decontamination_ngrams_path is not None
158

159
160
161
    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
Fabrizio Milo's avatar
Fabrizio Milo committed
162
        if (task.has_validation_docs() or task.has_test_docs())
163
    ]
Leo Gao's avatar
Leo Gao committed
164
165

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
166
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
167
168
169
170

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

Fabrizio Milo's avatar
Fabrizio Milo committed
171
    overlaps = collections.defaultdict(list)  # {task_name: contaminated_docs}
172

173
174
175
176
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
177
178
179
180

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}

181
182
    docs_for_decontamination = collections.defaultdict(list)

183
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
184
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
185
        versions[task_name] = task.VERSION
186
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
187
188
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
189
            task_doc_func = task.test_docs
Fabrizio Milo's avatar
Fabrizio Milo committed
190
            task_set = "test"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
191
        elif task.has_validation_docs():
Fabrizio Milo's avatar
Fabrizio Milo committed
192
            task_set = "val"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
193
            task_doc_func = task.validation_docs
194
195
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
196

Leo Gao's avatar
Leo Gao committed
197
198
199
200
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
201
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
202

Fabrizio Milo's avatar
Fabrizio Milo committed
203
204
205
206
207
        description = (
            description_dict[task_name]
            if description_dict and task_name in description_dict
            else ""
        )
208

Leo Gao's avatar
Leo Gao committed
209
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
210
211

            if decontaminate and task.should_decontaminate():
Fabrizio Milo's avatar
Fabrizio Milo committed
212
213
214
                docs_for_decontamination[(task_name, task_set)].append(
                    task.doc_to_decontamination_query(doc)
                )
215

Leo Gao's avatar
Leo Gao committed
216
217
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
Fabrizio Milo's avatar
Fabrizio Milo committed
218
                doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
Leo Gao's avatar
Leo Gao committed
219
220
            )
            reqs = task.construct_requests(doc, ctx)
221
222
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
223
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
224
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
225
226
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
227
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
228

229
230
231
    # Compare all tasks/sets at once to ensure a single training set scan
    if decontaminate:
        print("Finding train/test overlap, please wait...")
Fabrizio Milo's avatar
Fabrizio Milo committed
232
233
234
        overlaps = get_train_overlap(
            docs_for_decontamination, decontamination_ngrams_path, limit
        )
235

Leo Gao's avatar
Leo Gao committed
236
237
238
239
240
    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
241
242
243
244
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
245

Leo Gao's avatar
Leo Gao committed
246
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
247
        resps = getattr(lm, reqtype)([req.args for req in reqs])
Fabrizio Milo's avatar
Fabrizio Milo committed
248
249
250
        resps = [
            x if req.index is None else x[req.index] for x, req in zip(resps, reqs)
        ]
Leo Gao's avatar
Leo Gao committed
251
252
253

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
Fabrizio Milo's avatar
Fabrizio Milo committed
254

Leo Gao's avatar
Leo Gao committed
255
256
257
258
259
260
261
262
263
264
265
266
267
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
268
269
270
271
272

            # Re-use the evaluation for the decontaminated set by just ignoring the overlaps
            if decontaminate and task_name in overlaps:
                if doc_id not in overlaps[task_name]:
                    vals[(task_name, metric + decontaminate_suffix)].append(value)
Fabrizio Milo's avatar
Fabrizio Milo committed
273

Leo Gao's avatar
Leo Gao committed
274
275
276
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
Fabrizio Milo's avatar
Fabrizio Milo committed
277
        real_metric = metric  # key when looking up the metric with task.aggregation
278
        if metric.endswith(decontaminate_suffix):
Fabrizio Milo's avatar
Fabrizio Milo committed
279
280
281
            real_metric = metric.replace(
                decontaminate_suffix, ""
            )  # decontaminated still uses the same metric
282
        results[task_name][metric] = task.aggregation()[real_metric](items)
Leo Gao's avatar
Leo Gao committed
283

284
285
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
286

287
        stderr = lm_eval.metrics.stderr_for_metric(
288
            metric=task.aggregation()[real_metric],
Fabrizio Milo's avatar
Fabrizio Milo committed
289
290
291
            bootstrap_iters=min(bootstrap_iters, 1000)
            if metric in ["bleu", "chrf", "ter"]
            else bootstrap_iters,
292
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
293

Leo Gao's avatar
Leo Gao committed
294
295
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
296
297

    return {"results": dict(results), "versions": dict(versions)}
298
299
300


def make_table(result_dict):
301
    """Generate table of results."""
302
303
304
305
306
307
308
309
310
311
312
313
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
314
315
            if m.endswith("_stderr"):
                continue
316
317
318

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
Fabrizio Milo's avatar
Fabrizio Milo committed
319
                values.append([k, version, m, "%.4f" % v, "±", "%.4f" % se])
320
            else:
Fabrizio Milo's avatar
Fabrizio Milo committed
321
                values.append([k, version, m, "%.4f" % v, "", ""])
322
323
324
325
326
327
328
329
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

330
    return md_writer.dumps()