"PTDN/configs/ppocr_det_server_params.txt" did not exist on "4042247c975966d9fb6cb8d80c35d29d7a218ac0"
evaluator.py 31.3 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
4
import os
Baber Abbasi's avatar
Baber Abbasi committed
5
import random
6
import time
7
8
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
9

10
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
11
import torch
lintangsutawika's avatar
lintangsutawika committed
12

lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
14
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
15
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
16
import lm_eval.models
17
from lm_eval.caching.cache import delete_cache
18
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
19
    consolidate_group_results,
20
21
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
22
    get_subtask_list,
23
24
25
26
27
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
28
from lm_eval.loggers import EvaluationTracker
29
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
30
from lm_eval.tasks import TaskManager, get_task_dict
31
32
from lm_eval.utils import (
    handle_non_serializable,
33
    hash_dict_images,
34
35
    hash_string,
    positional_deprecated,
Baber Abbasi's avatar
Baber Abbasi committed
36
    setup_logging,
37
38
    simple_parse_args_string,
)
39

Fabrizio Milo's avatar
Fabrizio Milo committed
40

41
42
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
43
    from lm_eval.api.task import Task
44

Lintang Sutawika's avatar
Lintang Sutawika committed
45
46
eval_logger = logging.getLogger(__name__)

47

48
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
49
50
def simple_evaluate(
    model,
51
52
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
53
    num_fewshot: Optional[int] = None,
54
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
55
56
57
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
58
59
60
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
61
    limit: Optional[Union[int, float]] = None,
62
    samples: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
63
64
65
66
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
67
68
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
69
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
70
    fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
71
    gen_kwargs: Union[str, dict, None] = None,
72
    task_manager: Optional[TaskManager] = None,
Baber Abbasi's avatar
Baber Abbasi committed
73
    verbosity=None,
Baber Abbasi's avatar
Baber Abbasi committed
74
    predict_only: bool = False,
75
76
77
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
78
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
79
    confirm_run_unsafe_code: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
80
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
81
):
82
    """Instantiate and evaluate a model on a list of tasks.
83

84
85
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
86
87
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
88
        Ignored if `model` argument is a LM object.
89
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
90
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
91
92
    :param num_fewshot: int
        Number of examples in few-shot context
93
    :param batch_size: int or str, optional
94
        Batch size for model
95
96
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
97
    :param device: str, optional
98
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
99
100
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
101
102
103
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
104
        Rewrites all the request cache if set to `True`. `None` if not desired.
105
    :param delete_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
106
        Deletes all the request cache if set to `True`. `None` if not desired.
107
108
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
109
110
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
111
    :param bootstrap_iters:
112
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
113
114
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
115
    :param write_out: bool
116
117
118
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
119
120
    :param system_instruction: str
        System instruction to be applied to the prompt
121
122
123
124
125
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
126
127
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Baber Abbasi's avatar
Baber Abbasi committed
128
129
    :param gen_kwargs: dict or comma-separated string
        Arguments for model generation
130
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
131
    :param verbosity: str
Lintang Sutawika's avatar
Lintang Sutawika committed
132
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
133
134
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
135
136
137
138
139
140
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
141
142
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
143
144
145
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
    return
146
        Dictionary of results
147
    """
Baber Abbasi's avatar
Baber Abbasi committed
148
149
    if verbosity is not None:
        setup_logging(verbosity=verbosity)
150
    start_date = time.time()
151

152
153
154
155
156
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )

157
158
159
160
161
162
163
    if (
        (isinstance(model_args, str) and "inst" in model_args.lower())
        or (
            isinstance(model_args, dict)
            and any("inst" in str(v).lower() for v in model_args.values())
        )
    ) and not apply_chat_template:
Baber Abbasi's avatar
Baber Abbasi committed
164
        eval_logger.warning(
165
            "Model appears to be an instruct variant but chat template is not applied. Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`)."
Baber Abbasi's avatar
Baber Abbasi committed
166
167
        )

168
169
170
171
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

172
    seed_message = []
173
174
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
175
        seed_message.append(f"Setting random seed to {random_seed}")
176
177
178
        random.seed(random_seed)

    if numpy_random_seed is not None:
179
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
180
181
182
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
183
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
184
185
        torch.manual_seed(torch_random_seed)

186
187
188
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

189
190
191
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

192
193
    if tasks is None:
        tasks = []
194
195
196
197
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
198

lintangsutawika's avatar
lintangsutawika committed
199
    if gen_kwargs is not None:
Baber Abbasi's avatar
Baber Abbasi committed
200
201
        if isinstance(gen_kwargs, str):
            gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
202
        eval_logger.warning(
Baber Abbasi's avatar
Baber Abbasi committed
203
            f"generation_kwargs: {gen_kwargs} specified through cli, these settings will update set parameters in yaml tasks. "
204
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
205
        )
Baber Abbasi's avatar
Baber Abbasi committed
206
        if not gen_kwargs:
lintangsutawika's avatar
lintangsutawika committed
207
208
            gen_kwargs = None

209
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
210
        if model_args is None:
211
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
212
            model_args = ""
213

214
        if isinstance(model_args, dict):
215
216
217
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
218
219
220
221
222
223
224
225
226
227
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
228
229
230
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
231
232
233
234
235
236
237
238
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
239
    else:
240
        if not isinstance(model, lm_eval.api.model.LM):
241
242
243
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
244
        eval_logger.info("Using pre-initialized model")
245
        lm = model
246

haileyschoelkopf's avatar
haileyschoelkopf committed
247
    if use_cache is not None:
248
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
249
250
251
252
253
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
254
255
256
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
257
258
        )

259
    if task_manager is None:
Baber Abbasi's avatar
Baber Abbasi committed
260
261
262
263
264
265
266
267
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
            if isinstance(model_args, dict)
            else {}
        ) | (metadata or {})
        task_manager = TaskManager(metadata=metadata)
268

Baber Abbasi's avatar
Baber Abbasi committed
269
270
271
272
    task_dict = get_task_dict(
        tasks,
        task_manager,
    )
Baber Abbasi's avatar
Baber Abbasi committed
273

Lintang Sutawika's avatar
Lintang Sutawika committed
274
275
276
277
278
279
280
281
282
283
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
284

285
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
286
287
288
289
290
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )
Baber Abbasi's avatar
Baber Abbasi committed
291
292
293
                    eval_logger.info(
                        f"{task_obj.config.task}: Using gen_kwargs: {task_obj.config.generation_kwargs}"
                    )
Lintang Sutawika's avatar
Lintang Sutawika committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
328

Stephen Hogg's avatar
Stephen Hogg committed
329
    if check_integrity:
330
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
331

KonradSzafer's avatar
KonradSzafer committed
332
333
334
335
336
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
337
338
339
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
340
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
341
342
        )

343
344
345
346
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
347
        samples=samples,
348
349
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
350
        bootstrap_iters=bootstrap_iters,
351
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
352
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
353
354
355
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
356
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
357
        confirm_run_unsafe_code=confirm_run_unsafe_code,
358
    )
Baber Abbasi's avatar
Baber Abbasi committed
359
    if verbosity is not None:
Zeyuan Allen-Zhu's avatar
Zeyuan Allen-Zhu committed
360
        setup_logging(verbosity=verbosity)
361

362
    if lm.rank == 0:
363
364
365
366
367
368
369
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

370
371
        # add info about the model and few shot config
        results["config"] = {
372
            "model": model_name,
373
374
            "model_args": model_args,
        }
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
390
391
392
393
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
394
395
            }
        )
396
        results["git_hash"] = get_git_commit_hash()
397
        results["date"] = start_date
398
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
399
        add_tokenizer_info(results, lm)  # additional info about tokenizer
400
401
402
        return results
    else:
        return None
403

Leo Gao's avatar
Leo Gao committed
404

405
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
406
def evaluate(
407
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
408
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
409
    limit: Optional[int] = None,
410
    samples: Optional[dict] = None,
411
412
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
413
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
414
415
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
416
    system_instruction: Optional[str] = None,
417
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
418
    fewshot_as_multiturn: bool = False,
419
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
420
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
421
):
422
423
424
425
426
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
427
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
428
429
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
430
431
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
Hojin Lee's avatar
Hojin Lee committed
432
433
434
435
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
436
    :param bootstrap_iters:
437
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
438
    :param write_out: bool
439
440
441
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
442
443
    :param system_instruction: str
        System instruction to be applied to the prompt
444
445
446
447
448
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
449
450
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
451
452
453
454
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
455
456
457
    :return
        Dictionary of results
    """
458

459
460
461
462
463
464
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )
    if samples is not None:
        eval_logger.info(f"Evaluating examples for tasks {list(samples.keys())}")
465
466
467
468
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )
469
    # tracks all Instances/requests a model must generate output on.
470
    requests = defaultdict(list)
471
472
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
473
    padding_requests = defaultdict(int)
474

475
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
476
    eval_tasks = get_task_list(task_dict)
477
    if not log_samples:
478
        if not all(
479
480
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
481
482
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
483

Hojin Lee's avatar
Hojin Lee committed
484
485
486
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
487
    incompatible_tasks = []
488
489
    for task_output in eval_tasks:
        task: Task = task_output.task
490

491
        if getattr(task, "MULTIMODAL", False) and not getattr(lm, "MULTIMODAL", False):
492
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
493
494
495
496
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
497
498
499
500
501
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
Hojin Lee's avatar
Hojin Lee committed
502
    # end validation check
503

Chenjie Luo's avatar
Chenjie Luo committed
504
505
506
    # Cache the limit arg.
    limit_arg = limit
    limits = []
507
508
509
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
510
511
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
512
513
        task.build_all_requests(
            limit=limit,
514
515
516
            samples=samples.get(task_output.task_name, None)
            if samples is not None
            else samples,
517
518
519
520
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
521
            system_instruction=system_instruction,
522
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
523
            fewshot_as_multiturn=fewshot_as_multiturn,
524
525
526
527
528
529
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
530
        )
531
        eval_logger.debug(
532
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
533
534
        )
        if write_out:
535
            print_writeout(task)
536
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
537
538
539
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
540
541

        if lm.world_size > 1:
542
543
544
545
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
546
547
548
549
550
551
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
552
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
553
            numpad = max(gathered_item) - gathered_item[lm.rank]
554
555
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
556

557
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
558
559
    # execute each type of request
    for reqtype, reqs in requests.items():
560
        eval_logger.info(f"Running {reqtype} requests")
561
562
563
564
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
565

566
567
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
568
569
                cloned_reqs.extend([req] * req.repeats)

570
571
572
573
574
575
576
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

577
578
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
579

580
581
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
582
583
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
584
    for task_output, limit in zip(eval_tasks, limits):
585
        task = task_output.task
586
587
        task.apply_filters()

588
589
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
590
        # TODO: make it possible to use a different metric per filter
591
        # Pre-process task.instances to group by doc_id
592
        instances_by_doc_id = defaultdict(list)
593
594
595
596
597
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
598
        # iterate over different filters used
599
        for filter_key in task.instances[0].filtered_resps.keys():
600
601
602
603
604
            indices = (
                samples.get(task_output.task_name, None)
                if samples is not None
                else None
            )
605
            doc_iterator = task.doc_iterator(
606
607
608
609
                rank=RANK,
                limit=limit,
                world_size=WORLD_SIZE,
                samples=indices,
610
            )
611
            for doc_id, doc in doc_iterator:
612
613
614
615
                if indices:
                    doc_id_true = indices[doc_id]
                else:
                    doc_id_true = doc_id
616
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
617
                metrics = task.process_results(
618
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
619
                )
620
621
622
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
623
                        "doc_id": doc_id_true,
624
625
626
627
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
628
629
630
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
631
632
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
633
634
635
636
637
638
639
640
641
642
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
643
644
                    }
                    example.update(metrics)
645
                    task_output.logged_samples.append(example)
646
                for metric, value in metrics.items():
647
                    task_output.sample_metrics[(metric, filter_key)].append(value)
648

649
650
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
651
        # first gather logged samples across all ranks
652
653
654
655
656
657
658
659
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
660
                )
661

662
663
664
665
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
666

667
668
669
670
671
672
673
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
674
                )
675
676
677
678
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
679

680
    if RANK == 0:
681
682
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
683
684
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
685
686
687
688
689
690
691
692
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
693

694
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
695
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
711
712
713
714
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
715

Lintang Sutawika's avatar
Lintang Sutawika committed
716
717
718
719
720
721
722
723
724
725
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
726

727
        results_dict = {
728
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
729
730
731
732
733
734
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
735
736
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
737
            "n-shot": dict(sorted(num_fewshot.items())),
738
            "higher_is_better": dict(sorted(higher_is_better.items())),
739
740
741
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
742
743
744
745
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
746
                }
Chenjie Luo's avatar
Chenjie Luo committed
747
                for task_output, limit in zip(eval_tasks, limits)
748
            },
749
        }
750
        if log_samples:
751
752
753
754
755
756
            # default: hash images
            samples = (
                hash_dict_images(samples)
                if os.environ.get("LMEVAL_HASHMM", "1") != "0"
                else samples
            )
757
758
759
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
760

761
762
    else:
        return None
763
764
765
766


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
767
768
769
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
770
771
772
    }

    return request_caching_args