evaluator.py 29.7 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
Lintang Sutawika's avatar
Lintang Sutawika committed
29
30
31
32
from lm_eval.tasks import (
    TaskManager,
    get_task_dict,
)
33
34
35
36
from lm_eval.utils import (
    handle_non_serializable,
    hash_string,
    positional_deprecated,
Baber Abbasi's avatar
Baber Abbasi committed
37
    setup_logging,
38
39
    simple_parse_args_string,
)
40

Fabrizio Milo's avatar
Fabrizio Milo committed
41

42
43
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
44
    from lm_eval.api.task import Task
45

Lintang Sutawika's avatar
Lintang Sutawika committed
46
47
eval_logger = logging.getLogger(__name__)

48

49
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
50
51
def simple_evaluate(
    model,
52
53
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
54
    num_fewshot: Optional[int] = None,
55
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
56
57
58
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
59
60
61
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
62
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
63
64
65
66
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
67
68
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
69
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
70
    fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
71
    gen_kwargs: Union[str, dict, None] = None,
72
    task_manager: Optional[TaskManager] = None,
Baber Abbasi's avatar
Baber Abbasi committed
73
    verbosity=None,
Baber Abbasi's avatar
Baber Abbasi committed
74
    predict_only: bool = False,
75
76
77
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
78
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
79
    confirm_run_unsafe_code: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
80
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
81
):
82
    """Instantiate and evaluate a model on a list of tasks.
83

84
85
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
86
87
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
88
        Ignored if `model` argument is a LM object.
89
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
90
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
91
92
    :param num_fewshot: int
        Number of examples in few-shot context
93
    :param batch_size: int or str, optional
94
        Batch size for model
95
96
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
97
    :param device: str, optional
98
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
99
100
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
101
102
103
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
104
        Rewrites all the request cache if set to `True`. `None` if not desired.
105
    :param delete_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
106
        Deletes all the request cache if set to `True`. `None` if not desired.
107
108
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
109
    :param bootstrap_iters:
110
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
111
112
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
113
    :param write_out: bool
114
115
116
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
117
118
    :param system_instruction: str
        System instruction to be applied to the prompt
119
120
121
122
123
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
124
125
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Baber Abbasi's avatar
Baber Abbasi committed
126
127
    :param gen_kwargs: dict or comma-separated string
        Arguments for model generation
128
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
129
    :param verbosity: str
Lintang Sutawika's avatar
Lintang Sutawika committed
130
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
131
132
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
133
134
135
136
137
138
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
139
140
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
141
142
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
Baber Abbasi's avatar
Baber Abbasi committed
143

Baber Abbasi's avatar
Baber Abbasi committed
144
    return
145
        Dictionary of results
146
    """
Baber Abbasi's avatar
Baber Abbasi committed
147
148
    if verbosity is not None:
        setup_logging(verbosity=verbosity)
149
    start_date = time.time()
150

Baber Abbasi's avatar
Baber Abbasi committed
151
152
153
154
155
156
157
    if isinstance(model_args, str) and (
        "instruct" in model_args and not apply_chat_template
    ):
        eval_logger.warning(
            "Instruct model detected, but chat template not applied. Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`)."
        )

158
159
160
161
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

162
    seed_message = []
163
164
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
165
        seed_message.append(f"Setting random seed to {random_seed}")
166
167
168
        random.seed(random_seed)

    if numpy_random_seed is not None:
169
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
170
171
172
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
173
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
174
175
        torch.manual_seed(torch_random_seed)

176
177
178
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

179
180
181
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

182
183
    if tasks is None:
        tasks = []
184
185
186
187
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
188

lintangsutawika's avatar
lintangsutawika committed
189
    if gen_kwargs is not None:
Baber Abbasi's avatar
Baber Abbasi committed
190
191
        if isinstance(gen_kwargs, str):
            gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
192
        eval_logger.warning(
Baber Abbasi's avatar
Baber Abbasi committed
193
            f"generation_kwargs: {gen_kwargs} specified through cli, these settings will update set parameters in yaml tasks. "
194
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
195
        )
Baber Abbasi's avatar
Baber Abbasi committed
196
        if not gen_kwargs:
lintangsutawika's avatar
lintangsutawika committed
197
198
            gen_kwargs = None

199
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
200
        if model_args is None:
201
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
202
            model_args = ""
203

204
        if isinstance(model_args, dict):
205
206
207
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
208
209
210
211
212
213
214
215
216
217
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
218
219
220
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
221
222
223
224
225
226
227
228
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
229
    else:
230
        if not isinstance(model, lm_eval.api.model.LM):
231
232
233
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
234
        eval_logger.info("Using pre-initialized model")
235
        lm = model
236

haileyschoelkopf's avatar
haileyschoelkopf committed
237
    if use_cache is not None:
238
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
239
240
241
242
243
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
244
245
246
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
247
248
        )

249
    if task_manager is None:
Baber Abbasi's avatar
Baber Abbasi committed
250
251
252
253
254
255
256
257
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
            if isinstance(model_args, dict)
            else {}
        ) | (metadata or {})
        task_manager = TaskManager(metadata=metadata)
258

Baber Abbasi's avatar
Baber Abbasi committed
259
260
261
262
    task_dict = get_task_dict(
        tasks,
        task_manager,
    )
Baber Abbasi's avatar
Baber Abbasi committed
263

Lintang Sutawika's avatar
Lintang Sutawika committed
264
265
266
267
268
269
270
271
272
273
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
274

275
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
276
277
278
279
280
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )
Baber Abbasi's avatar
Baber Abbasi committed
281
282
283
                    eval_logger.info(
                        f"{task_obj.config.task}: Using gen_kwargs: {task_obj.config.generation_kwargs}"
                    )
Lintang Sutawika's avatar
Lintang Sutawika committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
318

Stephen Hogg's avatar
Stephen Hogg committed
319
    if check_integrity:
320
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
321

KonradSzafer's avatar
KonradSzafer committed
322
323
324
325
326
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
327
328
329
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
330
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
331
332
        )

333
334
335
336
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
337
338
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
339
        bootstrap_iters=bootstrap_iters,
340
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
341
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
342
343
344
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
345
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
346
        confirm_run_unsafe_code=confirm_run_unsafe_code,
347
    )
Baber Abbasi's avatar
Baber Abbasi committed
348
    if verbosity is not None:
Zeyuan Allen-Zhu's avatar
Zeyuan Allen-Zhu committed
349
        setup_logging(verbosity=verbosity)
350

351
    if lm.rank == 0:
352
353
354
355
356
357
358
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

359
360
        # add info about the model and few shot config
        results["config"] = {
361
            "model": model_name,
362
363
            "model_args": model_args,
        }
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
379
380
381
382
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
383
384
            }
        )
385
        results["git_hash"] = get_git_commit_hash()
386
        results["date"] = start_date
387
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
388
        add_tokenizer_info(results, lm)  # additional info about tokenizer
389
390
391
        return results
    else:
        return None
392

Leo Gao's avatar
Leo Gao committed
393

394
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
395
def evaluate(
396
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
397
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
398
    limit: Optional[int] = None,
399
400
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
401
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
402
403
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
404
    system_instruction: Optional[str] = None,
405
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
406
    fewshot_as_multiturn: bool = False,
407
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
408
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
409
):
410
411
412
413
414
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
415
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
416
417
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
Hojin Lee's avatar
Hojin Lee committed
418
419
420
421
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
422
    :param bootstrap_iters:
423
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
424
    :param write_out: bool
425
426
427
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
428
429
    :param system_instruction: str
        System instruction to be applied to the prompt
430
431
432
433
434
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
435
436
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
437
438
439
440
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
441
442
443
    :return
        Dictionary of results
    """
444

445
446
447
448
449
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )

450
    # tracks all Instances/requests a model must generate output on.
451
    requests = defaultdict(list)
452
453
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
454
    padding_requests = defaultdict(int)
455

456
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
457
    eval_tasks = get_task_list(task_dict)
458
    if not log_samples:
459
        if not all(
460
461
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
462
463
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
464

Hojin Lee's avatar
Hojin Lee committed
465
466
467
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
468
    incompatible_tasks = []
469
470
    for task_output in eval_tasks:
        task: Task = task_output.task
471
472
473

        if getattr(lm, "MULTIMODAL", False) != getattr(task, "MULTIMODAL", False):
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
474
475
476
477
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
478
479
480
481
482
483
484
485
486
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
        else:
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which are text-only, but used a model type which only currently supports multimodal tasks."
            )
Hojin Lee's avatar
Hojin Lee committed
487
    # end validation check
488

Chenjie Luo's avatar
Chenjie Luo committed
489
490
491
    # Cache the limit arg.
    limit_arg = limit
    limits = []
492
493
494
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
495
496
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
497
498
499
500
501
502
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
503
            system_instruction=system_instruction,
504
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
505
            fewshot_as_multiturn=fewshot_as_multiturn,
506
507
508
509
510
511
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
512
        )
513
        eval_logger.debug(
514
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
515
516
        )
        if write_out:
517
            print_writeout(task)
518
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
519
520
521
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
522
523

        if lm.world_size > 1:
524
525
526
527
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
528
529
530
531
532
533
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
534
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
535
            numpad = max(gathered_item) - gathered_item[lm.rank]
536
537
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
538

539
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
540
541
    # execute each type of request
    for reqtype, reqs in requests.items():
542
        eval_logger.info(f"Running {reqtype} requests")
543
544
545
546
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
547

548
549
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
550
551
                cloned_reqs.extend([req] * req.repeats)

552
553
554
555
556
557
558
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

559
560
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
561

562
563
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
564
565
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
566
    for task_output, limit in zip(eval_tasks, limits):
567
        task = task_output.task
568
569
        task.apply_filters()

570
571
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
572
        # TODO: make it possible to use a different metric per filter
573
        # Pre-process task.instances to group by doc_id
574
        instances_by_doc_id = defaultdict(list)
575
576
577
578
579
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
580
        # iterate over different filters used
581
582
583
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
584
            )
585
            for doc_id, doc in doc_iterator:
586
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
587
                metrics = task.process_results(
588
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
589
                )
590
591
592
593
594
595
596
597
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
598
599
600
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
601
602
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
603
604
605
606
607
608
609
610
611
612
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
613
614
                    }
                    example.update(metrics)
615
                    task_output.logged_samples.append(example)
616
                for metric, value in metrics.items():
617
                    task_output.sample_metrics[(metric, filter_key)].append(value)
618

619
620
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
621
        # first gather logged samples across all ranks
622
623
624
625
626
627
628
629
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
630
                )
631

632
633
634
635
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
636

637
638
639
640
641
642
643
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
644
                )
645
646
647
648
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
649

650
    if RANK == 0:
651
652
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
653
654
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
655
656
657
658
659
660
661
662
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
663

664
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
665
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
681
682
683
684
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
685

Lintang Sutawika's avatar
Lintang Sutawika committed
686
687
688
689
690
691
692
693
694
695
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
696

697
        results_dict = {
698
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
699
700
701
702
703
704
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
705
706
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
707
            "n-shot": dict(sorted(num_fewshot.items())),
708
            "higher_is_better": dict(sorted(higher_is_better.items())),
709
710
711
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
712
713
714
715
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
716
                }
Chenjie Luo's avatar
Chenjie Luo committed
717
                for task_output, limit in zip(eval_tasks, limits)
718
            },
719
        }
720
721
722
723
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
724

725
726
    else:
        return None
727
728
729
730


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
731
732
733
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
734
735
736
    }

    return request_caching_args