task.py 41.3 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

16
17
from typing import Union
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    template_aliases: Union[str, list] = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
78
    # runtime configuration options
79
    num_fewshot: int = 0
80
    # scoring options
81
82
    metric_list: str = None
    output_type: str = "greedy_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

lintangsutawika's avatar
lintangsutawika committed
89
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
90

91
92
93
94
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
95
        if self.template_aliases:
96
97
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
98

99
100
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
101

102
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
103
                self.gold_alias = self.template_aliases + self.gold_alias
104

Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
107
108
109
110
111
112
113
114
115
116
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
                    "passed `generation_kwargs`, but not using a generation request type!"
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
117
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
118
119
120
121
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
122
                    "until": None
123
124
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
125
126
127
                    "do_sample": False,
                    "temperature": 0.0,
                }
128

haileyschoelkopf's avatar
haileyschoelkopf committed
129
130
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

131
132
133
    def __getitem__(self, item):
        return getattr(self, item)

134
    def to_dict(self):
135
136
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
137
        Used for dumping results alongside full task configuration
138

haileyschoelkopf's avatar
haileyschoelkopf committed
139
140
141
142
143
144
145
146
147
148
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
149
150
151
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
152
        return cfg_dict
153

154
155
156
157
158
159
160
161
162
163
164
165

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
166

167
168
169
170
171
172
173
174
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
210
        self._config = TaskConfig(**config) if config else TaskConfig()
211
212
213

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
214
            for name, components in self._config.get(
215
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
216
            ):
217
218
219
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
220
        self.sampler = samplers.Sampler(
221
222
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
249
250
251
252
253
254
255
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

293
294
295
296
297
298
299
300
301
302
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
303
            eval_logger.warning(
304
                "has_training_docs and has_validation_docs are False"
305
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
306
            )
307
308
            return self.test_docs()

309
310
311
312
313
314
315
316
317
318
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

347
    def build_all_requests(self, limit=None, rank=None, world_size=None):
348
349
350
351
352
353
354
355
356
357
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

358
359
360
361
        eval_logger.info(
            f"Building contexts for task '{self._config.task}' on rank {rank}..."
        )

362
        instances = []
363
364
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
365
        ):
366
            # sample fewshot context #TODO: need to offset doc_id by rank now!
367
            fewshot_ctx = self.fewshot_context(
368
369
                doc,
                self._config.num_fewshot,
370
            )
371

haileyschoelkopf's avatar
haileyschoelkopf committed
372
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
373
374
375
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
376
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
377
            )
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
403
            The number of times each instance in a dataset is inferred on. Defaults to 1,
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
439
440
441
442
443
444
445
446
447
448
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

449
    @utils.positional_deprecated
450
    def fewshot_context(self, doc, num_fewshot):
451
452
453
454
455
456
457
458
459
460
461
462
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
463
464
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
465
        else:
lintangsutawika's avatar
lintangsutawika committed
466
467
468
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
469
470

        example = self.doc_to_text(doc)
471
472
473
474
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
475
476
477
        elif type(example) == int:
            choices = self.doc_to_choice(doc)
            return labeled_examples + choices[example]
478
479
480

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
481
482
483
484
485
486
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
487

488
    def dump_config(self):
489
        """Returns a dictionary representing the task's config.
490
491
492
493
494

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
495
        # (num_fewshot)
496
497
        return self._config.to_dict()

498
499
500

class ConfigurableTask(Task):

501
    VERSION = "Yaml"
502
    OUTPUT_TYPE = None
503
    CONFIG = None
504
505
506
507

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
508
        # Get pre-configured attributes
509
        self._config = self.CONFIG
510

511
512
        # Use new configurations if there was no preconfiguration
        if self._config is None:
513
            self._config = TaskConfig(**config)
514
515
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
516
            if config is not None:
517
                self._config.__dict__.update(config)
518

519
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
520
521
522
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
523
524

        if self._config.output_type is not None:
525
            assert self._config.output_type in ALL_OUTPUT_TYPES
526
527
            self.OUTPUT_TYPE = self._config.output_type

528
529
530
531
532
533
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

534
535
536
537
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
538

539
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
540
        if self._config.metric_list is None:
541
            # TODO: handle this in TaskConfig.__post_init__ ?
542
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
543
544
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
545
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
546
547
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
548
549
550
551
552
553
554
555
556
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
557

558
                if self._config.process_results is not None:
559
560
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
561
562
563
564
565
566
567
568
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
                    self._metric_fn_list[metric_name] = get_metric(metric_name)
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
569

570
                if "aggregation" in metric_config:
571
                    agg_name = metric_config["aggregation"]
572
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
573
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
574
575
576
577
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
578
                else:
579
580

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
581
                    metric_agg = get_default_aggregation(metric_name)
582
                    eval_logger.warning(
583
584
585
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
586
                    )
587
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
588

589
590
591
592
593
594
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
595
596
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
597
                        f"higher_is_better={is_higher_better(metric_name)}"
598
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
599
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
600

601
        self.download(self._config.dataset_kwargs)
602
603
604
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
605
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
606
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
607
608
609
610
611
612
613
614
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
615
616
617
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
618
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
619
        else:
620
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
621
622

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
623
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
624
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
625
626
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
627
628
629
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
630
631
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
632
                list(self.fewshot_docs()), self, rnd=random.Random(1234)
633
            )
634

635
636
637
638
        if self._config.template_aliases is not None:
            for key, alias in self._config.template_aliases:
                self.dataset.rename_column(key, alias)

639
640
641
642
643
644
645
646
647
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

648
        # Test One Doc
649
650
651
        self.features = list(docs.features.keys())
        self.multiple_input = 0
        self.multiple_target = 0
652
653
        test_doc = docs[0]
        test_text = self.doc_to_text(test_doc)
654
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
655
656
657
658
659

        if self._config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
660
661
            else:
                num_choice = len(test_choice)
662

663
664
            if type(test_text) is int:
                self.multiple_input = num_choice
665

666
        if type(test_target) is list:
667
668
            self.multiple_target = len(test_target)

669
670
671
672
673
674
675
676
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

707
    def fewshot_docs(self):
708
        if self._config.fewshot_split is not None:
709
            return self.dataset[self._config.fewshot_split]
710
711
712
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
713
                    f"Task '{self._config.task}': "
714
715
716
717
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
718

719
720
721
722
723
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
724
725
726
727
728
729
            if self._config.doc_to_decontamination_query in self.features:
                return doc[self._config.doc_to_decontamination_query]
            else:
                return ast.literal_eval(
                    utils.apply_template(self._config.doc_to_decontamination_query, doc)
                )
730

731
732
733
734
735
736
737
738
739
740
741
742
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
743
744
745

        if self.prompt is not None:
            doc_to_text = self.prompt
746
747
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
748

749
750
751
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
752
            if doc_to_text in self.features:
753
754
755
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
756
757
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
758
759
760
761
762
                text_string = utils.apply_template(doc_to_text, doc)
                if text_string.isdigit():
                    return ast.literal_eval(text_string)
                else:
                    return text_string
763
        elif callable(doc_to_text):
764
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
765
        # Used when applying a Promptsource template
766
        elif hasattr(doc_to_text, "apply"):
767
            return doc_to_text.apply(doc)[0]
768
        else:
769
            print(type(doc_to_text))
770
            raise TypeError
771
772

    def doc_to_target(self, doc):
773
774
775

        if self.prompt is not None:
            doc_to_target = self.prompt
776
777
778
        else:
            doc_to_target = self._config.doc_to_target

779
780
781
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
782
            if doc_to_target in self.features:
783
784
785
786
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
787
            else:
lintangsutawika's avatar
lintangsutawika committed
788
789
790
791
792
                target_string = utils.apply_template(doc_to_target, doc)
                if target_string.isdigit():
                    return ast.literal_eval(target_string)
                else:
                    return target_string
793
        elif callable(doc_to_target):
794
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
795
        # Used when applying a Promptsource template
796
797
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
798
799
        else:
            raise TypeError
800
801
802
803
804

    def doc_to_choice(self, doc):

        if self.prompt is not None:
            doc_to_choice = self.prompt
lintangsutawika's avatar
lintangsutawika committed
805
        elif self._config.doc_to_choice is None:
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
            doc_to_choice = self._config.doc_to_choice

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
822

823
    def gold_alias(self, doc):
824
825
826
827
828
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
829
        if self._config.gold_alias is not None:
830
831
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
832
            return self.doc_to_target(doc)
833
834
835
836
837
838
839
840
841
842

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

843
844
    def construct_requests(self, doc, ctx, **kwargs):

845
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
846
            arguments = (ctx, self.doc_to_target(doc))
847
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
848
            arguments = (self.doc_to_target(doc),)
849
        elif self.OUTPUT_TYPE == "multiple_choice":
850
851
852
853

            choices = self.doc_to_choice(doc)
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
854
                cont = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
855
                arguments = [(ctx, " {}".format(cont)) for ctx in choices]
856
            else:
857
                # Otherwise they are placed in the continuation
lintangsutawika's avatar
lintangsutawika committed
858
                arguments = [(ctx, " {}".format(cont)) for cont in choices]
859

860
            request_list = [
861
862
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
863
                    doc=doc,
864
                    arguments=arg,
865
                    idx=i,
866
867
                    **kwargs,
                )
868
                for i, arg in enumerate(arguments)
869
            ]
870
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
871
            if "acc_mutual_info" in self._metric_fn_list.keys():
872
873
874
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
875
                # here mutual info refers to calculating
876
877
878
879
880
881
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
882
                            doc=doc,
883
                            arguments=("", "{}".format(choice)),
884
885
886
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
887
                        for i, choice in enumerate(choices)
888
889
890
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
891

892
        elif self.OUTPUT_TYPE == "greedy_until":
893
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
894
895

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
896
897
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
898
899
900

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
901
902
        if callable(self._config.process_results):
            return self._config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
903

904
        result_dict = {}
905
        use_metric = list(self._metric_fn_list.keys())
906
907
908
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
909
910
911
912
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
913
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
914
            (loglikelihood,) = results
915
916
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
917
            return {
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
933
            }
934
        elif self.OUTPUT_TYPE == "multiple_choice":
935
936

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
937

938
            # retrieve choices in List[str] form, to compute choice lengths, etc.
939
            choices = self.doc_to_choice(doc)
940
941
            completion_len = np.array([float(len(i)) for i in choices])

942
943
            if (
                2 * len(choices) == len(lls)
944
                and "acc_mutual_info" in self._metric_fn_list.keys()
945
946
947
948
949
950
951
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
952

953
954
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
955

956
957
            if self.multiple_input:
                gold = self.doc_to_text(doc)
958
            else:
959
                gold = self.doc_to_target(doc)
960
961
                if type(gold) is str:
                    gold = choices.index(gold)
lintangsutawika's avatar
lintangsutawika committed
962

963
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
964
965
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
966
                exact_match = int(any([is_greedy[i] for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
967
968
969
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
970
971
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
                exact_match = int(is_greedy[gold])
972
973

            result_dict = {
974
                **({"acc": acc} if "acc" in use_metric else {}),
975
976
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
977
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
978
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
979
980
            }

981
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
982
983
984
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
985
986
987
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

988
989
        elif self.OUTPUT_TYPE == "greedy_until":

990
            gold = self.doc_to_target(doc)
991
992
993
            if type(gold) == int:
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
994

995
            print(self._metric_fn_list)
996
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
                    for gold_option in gold:
                        res = self._metric_fn_list[key](
                            references=[gold_option],
                            predictions=[result],
                            **self._metric_fn_kwargs[key],
                        )
                        if isinstance(res, dict):
                            # TODO: this handles the case where HF evaluate returns a dict.
                            res = res[key]
                        scores.append(res)
                    if any(scores):
                        result = 1.0
                    else:
                        result = 0.0
                else:
                    result = self._metric_fn_list[key](
                        references=[gold],
                        predictions=[result],
                        **self._metric_fn_kwargs[key],
                    )
1022

haileyschoelkopf's avatar
haileyschoelkopf committed
1023
1024
1025
1026
                if isinstance(result, dict):
                    result_dict.update(result)
                else:
                    result_dict[key] = result
1027
        else:
lintangsutawika's avatar
lintangsutawika committed
1028
1029
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1030
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1031
            )
1032
1033
1034
1035
1036
1037
1038

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1039
        return self._higher_is_better
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
1050
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1051
1052
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1053
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1054
                doc=doc,
1055
                arguments=(ctx, " {}".format(choice)),
1056
                idx=i,
1057
1058
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1059
1060
            for i, choice in enumerate(doc["choices"])
        ]
1061
1062

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
1063
1064
1065
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1090
class PerplexityTask(Task):
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

1101
    def fewshot_context(self, doc, num_fewshot):
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1127
1128
1129
1130
1131
1132
1133
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1134
1135
1136

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1137
1138
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))