task.py 41.1 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

16
17
from typing import Union
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
78
    # runtime configuration options
79
    num_fewshot: int = 0
80
    # scoring options
81
82
    metric_list: str = None
    output_type: str = "greedy_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

lintangsutawika's avatar
lintangsutawika committed
89
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
90

91
    def __post_init__(self):
92

Lintang Sutawika's avatar
Lintang Sutawika committed
93
94
95
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
96
                    "passed `generation_kwargs`, but not using `output_type: greedy_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
97
                )
98
                assert self.output_type != "greedy_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
99
100
101
102
103
104
105

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
106
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
109
110
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
111
                    "until": None
112
113
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
114
115
116
                    "do_sample": False,
                    "temperature": 0.0,
                }
117

haileyschoelkopf's avatar
haileyschoelkopf committed
118
119
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

120
121
122
    def __getitem__(self, item):
        return getattr(self, item)

123
124
125
    def __setitem__(self, item, value):
        return setattr(self, item, value)

126
    def to_dict(self):
127
128
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
129
        Used for dumping results alongside full task configuration
130

haileyschoelkopf's avatar
haileyschoelkopf committed
131
132
133
134
135
136
137
138
139
140
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
141
142
143
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
144
        return cfg_dict
145

146
147
148
149
150
151
152
153
154
155
156
157

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
158

159
160
161
162
163
164
165
166
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
202
        self._config = TaskConfig(**config) if config else TaskConfig()
203
204
205

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
206
            for name, components in self._config.get(
207
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
208
            ):
209
210
211
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
212
        self.sampler = samplers.Sampler(
213
214
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
241
242
243
244
245
246
247
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

285
286
287
288
289
290
291
292
293
294
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
295
            eval_logger.warning(
296
                "has_training_docs and has_validation_docs are False"
297
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
298
            )
299
300
            return self.test_docs()

301
302
303
304
305
306
307
308
309
310
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

339
    def build_all_requests(self, limit=None, rank=None, world_size=None):
340
341
342
343
344
345
346
347
348
349
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

350
351
352
353
        eval_logger.info(
            f"Building contexts for task '{self._config.task}' on rank {rank}..."
        )

354
        instances = []
355
356
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
357
        ):
358
            # sample fewshot context #TODO: need to offset doc_id by rank now!
359
            fewshot_ctx = self.fewshot_context(
360
361
                doc,
                self._config.num_fewshot,
362
            )
363

haileyschoelkopf's avatar
haileyschoelkopf committed
364
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
365
366
367
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
368
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
369
            )
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
395
            The number of times each instance in a dataset is inferred on. Defaults to 1,
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
431
432
433
434
435
436
437
438
439
440
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

441
    @utils.positional_deprecated
442
    def fewshot_context(self, doc, num_fewshot):
443
444
445
446
447
448
449
450
451
452
453
454
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
455
456
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
457
        else:
lintangsutawika's avatar
lintangsutawika committed
458
459
460
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
461
462

        example = self.doc_to_text(doc)
463
464
465
466
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
467
468
469
        elif type(example) == int:
            choices = self.doc_to_choice(doc)
            return labeled_examples + choices[example]
470
471
472

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
473
474
475
476
477
478
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
479

480
    def dump_config(self):
481
        """Returns a dictionary representing the task's config.
482
483
484
485
486

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
487
        # (num_fewshot)
488
489
        return self._config.to_dict()

490
491
492

class ConfigurableTask(Task):

493
    VERSION = "Yaml"
494
    OUTPUT_TYPE = None
495
    CONFIG = None
496
497
498
499

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
500
        # Get pre-configured attributes
501
        self._config = self.CONFIG
502

503
504
        # Use new configurations if there was no preconfiguration
        if self._config is None:
505
            self._config = TaskConfig(**config)
506
507
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
508
            if config is not None:
509
                self._config.__dict__.update(config)
510

511
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
512
513
514
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
515
516

        if self._config.output_type is not None:
517
            assert self._config.output_type in ALL_OUTPUT_TYPES
518
519
            self.OUTPUT_TYPE = self._config.output_type

520
521
522
523
524
525
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

526
527
528
529
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
530

531
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
532
        if self._config.metric_list is None:
533
            # TODO: handle this in TaskConfig.__post_init__ ?
534
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
535
536
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
537
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
538
539
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
540
541
542
543
544
545
546
547
548
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
549

550
                if self._config.process_results is not None:
551
552
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
553
554
555
556
557
558
559
560
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
                    self._metric_fn_list[metric_name] = get_metric(metric_name)
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
561

562
                if "aggregation" in metric_config:
563
                    agg_name = metric_config["aggregation"]
564
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
565
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
566
567
568
569
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
570
                else:
571
572

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
573
                    metric_agg = get_default_aggregation(metric_name)
574
                    eval_logger.warning(
575
576
577
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
578
                    )
579
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
580

581
582
583
584
585
586
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
587
588
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
589
                        f"higher_is_better={is_higher_better(metric_name)}"
590
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
591
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
592

593
        self.download(self._config.dataset_kwargs)
594
595
596
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
597
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
598
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
599
600
601
602
603
604
605
606
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
607
608
609
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
610
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
611
        else:
612
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
613
614

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
615
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
616
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
617
618
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
619
620
621
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
622
623
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
624
                list(self.fewshot_docs()), self, rnd=random.Random(1234)
625
            )
626

627
628
629
630
631
632
633
634
635
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

636
        # Test One Doc
637
638
639
        self.features = list(docs.features.keys())
        self.multiple_input = 0
        self.multiple_target = 0
640
641
        test_doc = docs[0]
        test_text = self.doc_to_text(test_doc)
642
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
643
644
645
646
647

        if self._config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
648
649
            else:
                num_choice = len(test_choice)
650

651
652
            if type(test_text) is int:
                self.multiple_input = num_choice
653

654
        if type(test_target) is list:
655
656
            self.multiple_target = len(test_target)

657
658
659
660
661
662
663
664
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
684
        if self.has_training_docs():
685
            if self._config.process_docs is not None:
686
687
688
                return self._config.process_docs(
                    self.dataset[self._config.training_split]
                )
689
690
691
            return self.dataset[self._config.training_split]

    def validation_docs(self):
692
        if self.has_validation_docs():
693
            if self._config.process_docs is not None:
694
695
696
                return self._config.process_docs(
                    self.dataset[self._config.validation_split]
                )
697
698
699
            return self.dataset[self._config.validation_split]

    def test_docs(self):
700
        if self.has_test_docs():
701
            if self._config.process_docs is not None:
702
                return self._config.process_docs(self.dataset[self._config.test_split])
703
704
            return self.dataset[self._config.test_split]

705
    def fewshot_docs(self):
706
        if self._config.fewshot_split is not None:
707
            return self.dataset[self._config.fewshot_split]
708
709
710
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
711
                    f"Task '{self._config.task}': "
712
713
714
715
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
716

717
718
719
720
721
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
722
723
724
725
726
727
            if self._config.doc_to_decontamination_query in self.features:
                return doc[self._config.doc_to_decontamination_query]
            else:
                return ast.literal_eval(
                    utils.apply_template(self._config.doc_to_decontamination_query, doc)
                )
728

729
730
731
732
733
734
735
736
737
738
739
740
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
741
742
743

        if self.prompt is not None:
            doc_to_text = self.prompt
744
745
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
746

747
748
749
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
750
            if doc_to_text in self.features:
751
752
753
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
754
755
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
756
757
758
759
760
                text_string = utils.apply_template(doc_to_text, doc)
                if text_string.isdigit():
                    return ast.literal_eval(text_string)
                else:
                    return text_string
761
        elif callable(doc_to_text):
762
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
763
        # Used when applying a Promptsource template
764
        elif hasattr(doc_to_text, "apply"):
765
            return doc_to_text.apply(doc)[0]
766
        else:
767
            print(type(doc_to_text))
768
            raise TypeError
769
770

    def doc_to_target(self, doc):
771
772
773

        if self.prompt is not None:
            doc_to_target = self.prompt
774
775
776
        else:
            doc_to_target = self._config.doc_to_target

777
778
779
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
780
            if doc_to_target in self.features:
781
782
783
784
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
785
            else:
lintangsutawika's avatar
lintangsutawika committed
786
787
788
789
790
                target_string = utils.apply_template(doc_to_target, doc)
                if target_string.isdigit():
                    return ast.literal_eval(target_string)
                else:
                    return target_string
791
        elif callable(doc_to_target):
792
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
793
        # Used when applying a Promptsource template
794
795
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
796
797
        else:
            raise TypeError
798
799
800
801
802

    def doc_to_choice(self, doc):

        if self.prompt is not None:
            doc_to_choice = self.prompt
lintangsutawika's avatar
lintangsutawika committed
803
        elif self._config.doc_to_choice is None:
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
            doc_to_choice = self._config.doc_to_choice

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
820

821
    def gold_alias(self, doc):
822
823
824
825
826
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
827
        if self._config.gold_alias is not None:
828
829
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
830
            return self.doc_to_target(doc)
831
832
833
834
835
836
837
838
839
840

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

841
842
    def construct_requests(self, doc, ctx, **kwargs):

843
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
844
            arguments = (ctx, self.doc_to_target(doc))
845
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
846
            arguments = (self.doc_to_target(doc),)
847
        elif self.OUTPUT_TYPE == "multiple_choice":
848
849
850
851

            choices = self.doc_to_choice(doc)
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
852
                cont = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
853
                arguments = [(ctx, " {}".format(cont)) for ctx in choices]
854
            else:
855
                # Otherwise they are placed in the continuation
lintangsutawika's avatar
lintangsutawika committed
856
                arguments = [(ctx, " {}".format(cont)) for cont in choices]
857

858
            request_list = [
859
860
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
861
                    doc=doc,
862
                    arguments=arg,
863
                    idx=i,
864
865
                    **kwargs,
                )
866
                for i, arg in enumerate(arguments)
867
            ]
868
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
869
            if "acc_mutual_info" in self._metric_fn_list.keys():
870
871
872
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
873
                # here mutual info refers to calculating
874
875
876
877
878
879
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
880
                            doc=doc,
881
                            arguments=("", "{}".format(choice)),
882
883
884
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
885
                        for i, choice in enumerate(choices)
886
887
888
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
889

890
        elif self.OUTPUT_TYPE == "greedy_until":
891
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
892
893

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
894
895
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
896
897
898

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
899
900
        if callable(self._config.process_results):
            return self._config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
901

902
        result_dict = {}
903
        use_metric = list(self._metric_fn_list.keys())
904
905
906
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
907
908
909
910
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
911
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
912
            (loglikelihood,) = results
913
914
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
915
            return {
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
931
            }
932
        elif self.OUTPUT_TYPE == "multiple_choice":
933
934

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
935

936
            # retrieve choices in List[str] form, to compute choice lengths, etc.
937
            choices = self.doc_to_choice(doc)
938
939
            completion_len = np.array([float(len(i)) for i in choices])

940
941
            if (
                2 * len(choices) == len(lls)
942
                and "acc_mutual_info" in self._metric_fn_list.keys()
943
944
945
946
947
948
949
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
950

951
952
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
953

954
955
            if self.multiple_input:
                gold = self.doc_to_text(doc)
956
            else:
957
                gold = self.doc_to_target(doc)
958
959
                if type(gold) is str:
                    gold = choices.index(gold)
lintangsutawika's avatar
lintangsutawika committed
960

961
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
962
963
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
964
                exact_match = int(any([is_greedy[i] for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
965
966
967
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
968
969
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
                exact_match = int(is_greedy[gold])
970
971

            result_dict = {
972
                **({"acc": acc} if "acc" in use_metric else {}),
973
974
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
975
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
976
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
977
978
            }

979
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
980
981
982
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
983
984
985
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

986
987
        elif self.OUTPUT_TYPE == "greedy_until":

988
            gold = self.doc_to_target(doc)
989
990
991
            if type(gold) == int:
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
992

993
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
                    for gold_option in gold:
                        res = self._metric_fn_list[key](
                            references=[gold_option],
                            predictions=[result],
                            **self._metric_fn_kwargs[key],
                        )
                        if isinstance(res, dict):
                            # TODO: this handles the case where HF evaluate returns a dict.
                            res = res[key]
                        scores.append(res)
                    if any(scores):
                        result = 1.0
                    else:
                        result = 0.0
                else:
                    result = self._metric_fn_list[key](
                        references=[gold],
                        predictions=[result],
                        **self._metric_fn_kwargs[key],
                    )
1019

haileyschoelkopf's avatar
haileyschoelkopf committed
1020
1021
1022
1023
                if isinstance(result, dict):
                    result_dict.update(result)
                else:
                    result_dict[key] = result
1024
        else:
lintangsutawika's avatar
lintangsutawika committed
1025
1026
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1027
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1028
            )
1029
1030
1031
1032
1033
1034
1035

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1036
        return self._higher_is_better
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
1047
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1048
1049
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1050
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1051
                doc=doc,
1052
                arguments=(ctx, " {}".format(choice)),
1053
                idx=i,
1054
1055
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1056
1057
            for i, choice in enumerate(doc["choices"])
        ]
1058
1059

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
1060
1061
1062
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1087
class PerplexityTask(Task):
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

1098
    def fewshot_context(self, doc, num_fewshot):
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1124
1125
1126
1127
1128
1129
1130
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1131
1132
1133

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1134
1135
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))