task.py 40.5 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
34
35
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
36
37
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
38
39
    AGGREGATION_REGISTRY,
)
40

41
42
43
44
45
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
lintangsutawika's avatar
lintangsutawika committed
46
    "winograd_schema",
47
48
]

49
50
51

@dataclass
class TaskConfig(dict):
52
    # task naming/registry
53
    task: str = None
54
    group: Union[str, list] = None
55
56
57
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
58
59
    dataset_path: str = None
    dataset_name: str = None
60
    dataset_kwargs: dict = None
61
62
63
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
64
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
65
66
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
67
    template_aliases: Union[str, list] = None
68
69
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
70
    doc_to_choice: Union[Callable, str, dict, list] = None
71
    gold_alias: Union[Callable, str] = None
72
    use_prompt: str = None
73
    description: str = ""
74
75
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
76
    # runtime configuration options
77
    num_fewshot: int = 0
78
    # scoring options
79
80
    metric_list: str = None
    output_type: str = "greedy_until"
81
    generation_kwargs: dict = None
82
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
83
    filter_list: Union[str, list] = None
84
85
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
86

lintangsutawika's avatar
lintangsutawika committed
87
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
88

89
90
91
92
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
93
        if self.template_aliases:
94
95
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
96

97
98
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
99

100
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
101
                self.gold_alias = self.template_aliases + self.gold_alias
102

Lintang Sutawika's avatar
Lintang Sutawika committed
103
104
105
106
107
108
109
110
111
112
113
114
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
                    "passed `generation_kwargs`, but not using a generation request type!"
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
115
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
118
119
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
120
                    "until": None
121
122
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
125
                    "do_sample": False,
                    "temperature": 0.0,
                }
126

haileyschoelkopf's avatar
haileyschoelkopf committed
127
128
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

129
130
131
    def __getitem__(self, item):
        return getattr(self, item)

132
    def to_dict(self):
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
148
149
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
        return cfg_dict
151

152
153
154
155
156
157
158
159
160
161
162
163

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
164

165
166
167
168
169
170
171
172
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
208
        self._config = TaskConfig(**config) if config else TaskConfig()
209
210
211

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
212
            for name, components in self._config.get(
213
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
214
            ):
215
216
217
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
218
219
220
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
247
248
249
250
251
252
253
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

291
292
293
294
295
296
297
298
299
300
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
301
            eval_logger.warning(
302
                "has_training_docs and has_validation_docs are False"
303
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
304
            )
305
306
            return self.test_docs()

307
308
309
310
311
312
313
314
315
316
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

345
    def build_all_requests(self, limit=None, rank=None, world_size=None):
346
347
348
349
350
351
352
353
354
355
356
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
357
358
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
359
        ):
360
            # sample fewshot context #TODO: need to offset doc_id by rank now!
361
362
363
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
364

haileyschoelkopf's avatar
haileyschoelkopf committed
365
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
366
367
368
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
369
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
370
            )
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
396
            The number of times each instance in a dataset is inferred on. Defaults to 1,
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
432
433
434
435
436
437
438
439
440
441
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
462
463
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
464
        else:
lintangsutawika's avatar
lintangsutawika committed
465
466
467
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
468
469

        example = self.doc_to_text(doc)
470
471
472
473
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
474
475
476

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
477
478
479
480
481
482
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
483

484
    def dump_config(self):
485
        """Returns a dictionary representing the task's config.
486
487
488
489
490

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
491
        # (num_fewshot)
492
493
        return self._config.to_dict()

494
495
496

class ConfigurableTask(Task):

497
    VERSION = "Yaml"
498
    OUTPUT_TYPE = None
499
    CONFIG = None
500
501
502
503

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
504
        # Get pre-configured attributes
505
        self._config = self.CONFIG
506

507
508
        # Use new configurations if there was no preconfiguration
        if self._config is None:
509
            self._config = TaskConfig(**config)
510
511
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
512
            if config is not None:
513
                self._config.__dict__.update(config)
514

515
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
516
517
518
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
519
520

        if self._config.output_type is not None:
521
            assert self._config.output_type in ALL_OUTPUT_TYPES
522
523
            self.OUTPUT_TYPE = self._config.output_type

524
525
526
527
528
529
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

530
531
532
533
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
534

535
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
536
        if self._config.metric_list is None:
537
            # TODO: handle this in TaskConfig.__post_init__ ?
538
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
539
540
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
541
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
542
543
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
544
545
546
547
548
549
550
551
552
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
553
554
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
555

556
                if "aggregation" in metric_config:
557
                    agg_name = metric_config["aggregation"]
558
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
559
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
560
561
562
563
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
564
                else:
565
566

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
567
                    metric_agg = get_default_aggregation(metric_name)
568
                    eval_logger.warning(
569
570
571
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
572
                    )
573
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
574

575
576
577
578
579
580
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
581
582
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
583
                        f"higher_is_better={is_higher_better(metric_name)}"
584
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
585
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
586

587
        self.download(self._config.dataset_kwargs)
588
589
590
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
591
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
592
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
593
594
595
596
597
598
599
600
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
601
602
603
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
604
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
605
        else:
606
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
607
608

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
609
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
610
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
611
612
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
613
614
615
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
616
617
618
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
619
            )
620

621
622
623
624
        if self._config.template_aliases is not None:
            for key, alias in self._config.template_aliases:
                self.dataset.rename_column(key, alias)

625
626
627
628
629
630
631
632
633
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

634
        # Test One Doc
635
636
637
        self.features = list(docs.features.keys())
        self.multiple_input = 0
        self.multiple_target = 0
638
639
        test_doc = docs[0]
        test_text = self.doc_to_text(test_doc)
640
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
641
642
643
644
645

        if self._config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
646
647
            else:
                num_choice = len(test_choice)
648

649
650
            if type(test_text) is int:
                self.multiple_input = num_choice
651

652
        if type(test_target) is list:
653
654
655
656
            self.multiple_target = len(test_target)

        eval_logger.info(f" Input choices: {self.multiple_input}")
        eval_logger.info(f"Output choices: {self.multiple_target}")
657

658
659
660
661
662
663
664
665
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

696
    def fewshot_docs(self):
697
        if self._config.fewshot_split is not None:
698
            return self.dataset[self._config.fewshot_split]
699
700
701
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
702
                    f"Task '{self._config.task}': "
703
704
705
706
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
707

708
709
710
711
712
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
713
714
715
716
717
718
            if self._config.doc_to_decontamination_query in self.features:
                return doc[self._config.doc_to_decontamination_query]
            else:
                return ast.literal_eval(
                    utils.apply_template(self._config.doc_to_decontamination_query, doc)
                )
719

720
721
722
723
724
725
726
727
728
729
730
731
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
732
733
734

        if self.prompt is not None:
            doc_to_text = self.prompt
735
736
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
737

738
        if type(doc_to_text) == str:
739
            if doc_to_text in self.features:
740
741
742
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
743
744
745
                return doc[doc_to_text]
            else:
                return utils.apply_template(doc_to_text, doc)
746
        elif callable(doc_to_text):
747
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
748
        # Used when applying a Promptsource template
749
        elif hasattr(doc_to_text, "apply"):
750
            return doc_to_text.apply(doc)[0]
751
        else:
752
            print(type(doc_to_text))
753
            raise TypeError
754
755

    def doc_to_target(self, doc):
756
757
758

        if self.prompt is not None:
            doc_to_target = self.prompt
759
760
761
        else:
            doc_to_target = self._config.doc_to_target

762
        if type(doc_to_target) == str:
763
            if doc_to_target in self.features:
764
765
766
767
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
768
769
            else:
                return utils.apply_template(doc_to_target, doc)
770
        elif callable(doc_to_target):
771
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
772
        # Used when applying a Promptsource template
773
774
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
775
776
        else:
            raise TypeError
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

    def doc_to_choice(self, doc):

        if self.prompt is not None:
            doc_to_choice = self.prompt
        elif doc_to_choice is None:
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
            doc_to_choice = self._config.doc_to_choice

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
799

800
    def gold_alias(self, doc):
801
802
803
804
805
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
806
        if self._config.gold_alias is not None:
807
808
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
809
            return self.doc_to_target(doc)
810
811
812
813
814
815
816
817
818
819

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

820
821
    def construct_requests(self, doc, ctx, **kwargs):

822
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
823
            arguments = (ctx, self.doc_to_target(doc))
824
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
825
            arguments = (self.doc_to_target(doc),)
826
        elif self.OUTPUT_TYPE == "multiple_choice":
827
828
829
830

            choices = self.doc_to_choice(doc)
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
831
                cont = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
832
                arguments = [(ctx, " {}".format(cont)) for ctx in choices]
833
            else:
834
                # Otherwise they are placed in the continuation
lintangsutawika's avatar
lintangsutawika committed
835
                arguments = [(ctx, " {}".format(cont)) for cont in choices]
836

837
            request_list = [
838
839
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
840
                    doc=doc,
841
                    arguments=arg,
842
                    idx=i,
843
844
                    **kwargs,
                )
845
                for i, arg in enumerate(arguments)
846
            ]
847
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
848
            if "acc_mutual_info" in self._metric_fn_list.keys():
849
850
851
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
852
                # here mutual info refers to calculating
853
854
855
856
857
858
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
859
                            doc=doc,
860
                            arguments=("", "{}".format(choice)),
861
862
863
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
864
                        for i, choice in enumerate(choices)
865
866
867
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
868

869
        elif self.OUTPUT_TYPE == "greedy_until":
870
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
871

872
873
874
875
        elif self.OUTPUT_TYPE == "winograd_schema":
            # similar to multiple_choice task type except each request contains
            # multiple differing contexts with the same continuation

876
            contexts = self.doc_to_choice(doc)
877
            choice = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
878

879
880
881
882
883
884
885
886
887
888
            request_list = [
                Instance(
                    request_type="loglikelihood",
                    doc=doc,
                    arguments=(context, " {}".format(choice)),
                    idx=i,
                    **kwargs,
                )
                for i, context in enumerate(contexts)
            ]
lintangsutawika's avatar
lintangsutawika committed
889

890
891
            return request_list

lintangsutawika's avatar
lintangsutawika committed
892
        return Instance(
lintangsutawika's avatar
lintangsutawika committed
893
894
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
895
896
897

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
898
899
900
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

901
        result_dict = {}
902
        use_metric = list(self._metric_fn_list.keys())
903
904
905
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
906
907
908
909
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
910
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
911
            (loglikelihood,) = results
912
913
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
914
            return {
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
930
            }
931
        elif self.OUTPUT_TYPE == "multiple_choice":
932
933

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
934

935
            # retrieve choices in List[str] form, to compute choice lengths, etc.
936
            choices = self.doc_to_choice(doc)
937
938
            completion_len = np.array([float(len(i)) for i in choices])

939
940
            if (
                2 * len(choices) == len(lls)
941
                and "acc_mutual_info" in self._metric_fn_list.keys()
942
943
944
945
946
947
948
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
949

950
951
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
952

953
954
            if self.multiple_input:
                gold = self.doc_to_text(doc)
955
            else:
956
                gold = self.doc_to_target(doc)
957
958
                if type(gold) is str:
                    gold = choices.index(gold)
lintangsutawika's avatar
lintangsutawika committed
959

960
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
961
962
963
964
965
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
966
967

            result_dict = {
968
                **({"acc": acc} if "acc" in use_metric else {}),
969
970
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
971
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
972
973
            }

974
            if "exact_match" in self._metric_fn_list.keys():
975
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
976
                is_greedy = is_greedy[gold]  # take value for the gold answer
977
978
                result_dict["exact_match"] = int(is_greedy)

979
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
980
981
982
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
983
984
985
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
        elif self.OUTPUT_TYPE == "winograd_schema":

            lls, is_greedy = zip(*results)
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

            pred = np.argmax(lls)
            acc = 1.0 if np.argmax(lls) == gold else 0.0

            result_dict = {
                **({"acc": acc} if "acc" in use_metric else {}),
            }

1001
1002
        elif self.OUTPUT_TYPE == "greedy_until":

1003
            gold = self.doc_to_target(doc)
1004

1005
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
1006
                _dict = self._metric_fn_list[key](
1007
                    references=gold if self.multiple_target else [gold],
haileyschoelkopf's avatar
haileyschoelkopf committed
1008
1009
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
1010
                )
1011

lintangsutawika's avatar
lintangsutawika committed
1012
                result_dict = {**result_dict, **_dict}
1013
        else:
lintangsutawika's avatar
lintangsutawika committed
1014
1015
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1016
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', 'multiple_choice' or 'winograd_schema' ",
1017
            )
1018
1019
1020
1021
1022
1023
1024

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1025
        return self._higher_is_better
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
1036
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1037
1038
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1039
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1040
                doc=doc,
1041
                arguments=(ctx, " {}".format(choice)),
1042
                idx=i,
1043
1044
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1045
1046
            for i, choice in enumerate(doc["choices"])
        ]
1047
1048

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
1049
1050
1051
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1076
class PerplexityTask(Task):
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
1087
    def fewshot_context(self, doc, num_fewshot, rnd=None):
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1116
1117
1118
1119
1120
1121
1122
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1123
1124
1125

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1126
1127
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))