task.py 40.4 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
34
35
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
36
37
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
38
39
    AGGREGATION_REGISTRY,
)
40

41
42
43
44
45
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
lintangsutawika's avatar
lintangsutawika committed
46
    "winograd_schema",
47
48
]

49
50
51

@dataclass
class TaskConfig(dict):
52
    # task naming/registry
53
    task: str = None
54
    group: Union[str, list] = None
55
56
57
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
58
59
    dataset_path: str = None
    dataset_name: str = None
60
    dataset_kwargs: dict = None
61
62
63
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
64
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
65
66
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
67
    template_aliases: Union[str, list] = None
68
69
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
70
    doc_to_choice: Union[Callable, str, dict, list] = None
71
    gold_alias: Union[Callable, str] = None
72
    use_prompt: str = None
73
    description: str = ""
74
75
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
76
    # runtime configuration options
77
    num_fewshot: int = 0
78
    # scoring options
79
80
    metric_list: str = None
    output_type: str = "greedy_until"
81
    generation_kwargs: dict = None
82
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
83
    filter_list: Union[str, list] = None
84
85
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
86

lintangsutawika's avatar
lintangsutawika committed
87
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
88

89
90
91
92
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
93
        if self.template_aliases:
94
95
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
96

97
98
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
99

100
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
101
                self.gold_alias = self.template_aliases + self.gold_alias
102

Lintang Sutawika's avatar
Lintang Sutawika committed
103
104
105
106
107
108
109
110
111
112
113
114
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
                    "passed `generation_kwargs`, but not using a generation request type!"
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
115
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
118
119
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
120
                    "until": None
121
122
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
125
                    "do_sample": False,
                    "temperature": 0.0,
                }
126

haileyschoelkopf's avatar
haileyschoelkopf committed
127
128
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

129
130
131
    def __getitem__(self, item):
        return getattr(self, item)

132
    def to_dict(self):
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
148
149
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
        return cfg_dict
151

152
153
154
155
156
157
158
159
160
161
162
163

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
164

165
166
167
168
169
170
171
172
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
208
        self._config = TaskConfig(**config) if config else TaskConfig()
209
210
211

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
212
            for name, components in self._config.get(
213
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
214
            ):
215
216
217
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
218
219
220
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
247
248
249
250
251
252
253
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

291
292
293
294
295
296
297
298
299
300
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
301
            eval_logger.warning(
302
                "has_training_docs and has_validation_docs are False"
303
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
304
            )
305
306
            return self.test_docs()

307
308
309
310
311
312
313
314
315
316
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
317

318
319
    def doc_to_choice(self, doc):
        if self._config.doc_to_choice is None:
lintangsutawika's avatar
typo  
lintangsutawika committed
320
            eval_logger.error("doc_to_choice was called but not set in config")
lintangsutawika's avatar
lintangsutawika committed
321
322
        elif type(self._config.doc_to_choice) == list:
            return self._config.doc_to_choice
323
324
        elif type(self._config.doc_to_choice) == dict:
            return list(self._config.doc_to_choice.values())
325
        elif type(self._config.doc_to_choice) == str:
326
327
328
            return ast.literal_eval(
                utils.apply_template(self._config.doc_to_choice, doc)
            )
329
        else:
330
            return self._config.doc_to_choice(doc)
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

359
    def build_all_requests(self, limit=None, rank=None, world_size=None):
360
361
362
363
364
365
366
367
368
369
370
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
371
372
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
373
        ):
374
            # sample fewshot context #TODO: need to offset doc_id by rank now!
375
376
377
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
378

haileyschoelkopf's avatar
haileyschoelkopf committed
379
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
380
381
382
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
383
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
384
            )
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
410
            The number of times each instance in a dataset is inferred on. Defaults to 1,
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
446
447
448
449
450
451
452
453
454
455
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
476
477
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
478
        else:
lintangsutawika's avatar
lintangsutawika committed
479
480
481
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
482
483

        example = self.doc_to_text(doc)
484
485
486
487
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
488
489
490

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
491
492
493
494
495
496
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
497

498
    def dump_config(self):
499
        """Returns a dictionary representing the task's config.
500
501
502
503
504

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
505
        # (num_fewshot)
506
507
        return self._config.to_dict()

508
509
510

class ConfigurableTask(Task):

511
    VERSION = "Yaml"
512
    OUTPUT_TYPE = None
513
    CONFIG = None
514
515
516
517

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
518
        # Get pre-configured attributes
519
        self._config = self.CONFIG
520

521
522
        # Use new configurations if there was no preconfiguration
        if self._config is None:
523
            self._config = TaskConfig(**config)
524
525
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
526
            if config is not None:
527
                self._config.__dict__.update(config)
528

529
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
530
531
532
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
533
534

        if self._config.output_type is not None:
535
            assert self._config.output_type in ALL_OUTPUT_TYPES
536
537
            self.OUTPUT_TYPE = self._config.output_type

538
539
540
541
542
543
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

544
545
546
547
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
548

549
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
550
        if self._config.metric_list is None:
551
            # TODO: handle this in TaskConfig.__post_init__ ?
552
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
553
554
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
555
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
556
557
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
558
559
560
561
562
563
564
565
566
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
567
568
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
569

570
                if "aggregation" in metric_config:
571
                    agg_name = metric_config["aggregation"]
572
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
573
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
574
575
576
577
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
578
                else:
579
580

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
581
                    metric_agg = get_default_aggregation(metric_name)
582
                    eval_logger.warning(
583
584
585
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
586
                    )
587
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
588

589
590
591
592
593
594
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
595
596
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
597
                        f"higher_is_better={is_higher_better(metric_name)}"
598
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
599
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
600

601
        self.download(self._config.dataset_kwargs)
602
603
604
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
605
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
606
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
607
608
609
610
611
612
613
614
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
615
616
617
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
618
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
619
        else:
620
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
621
622

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
623
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
624
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
625
626
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
627
628
629
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
630
631
632
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
633
            )
634

635
636
637
638
        if self._config.template_aliases is not None:
            for key, alias in self._config.template_aliases:
                self.dataset.rename_column(key, alias)

639
640
641
642
643
644
645
646
647
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

648
        # Test One Doc
649
650
651
        self.features = list(docs.features.keys())
        self.multiple_input = 0
        self.multiple_target = 0
652
653
        test_doc = docs[0]
        test_text = self.doc_to_text(test_doc)
654
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
655
656
657
658
659

        if self._config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
660
661
            else:
                num_choice = len(test_choice)
662

663
664
            if type(test_text) is int:
                self.multiple_input = num_choice
665

666
        if type(test_target) is list:
667
668
669
670
            self.multiple_target = len(test_target)

        eval_logger.info(f" Input choices: {self.multiple_input}")
        eval_logger.info(f"Output choices: {self.multiple_target}")
671

672
673
674
675
676
677
678
679
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

710
    def fewshot_docs(self):
711
        if self._config.fewshot_split is not None:
712
            return self.dataset[self._config.fewshot_split]
713
714
715
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
716
                    f"Task '{self._config.task}': "
717
718
719
720
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
721

722
723
724
725
726
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
727
728
729
730
731
732
            if self._config.doc_to_decontamination_query in self.features:
                return doc[self._config.doc_to_decontamination_query]
            else:
                return ast.literal_eval(
                    utils.apply_template(self._config.doc_to_decontamination_query, doc)
                )
733

734
735
736
737
738
739
740
741
742
743
744
745
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
746
747
748

        if self.prompt is not None:
            doc_to_text = self.prompt
749
750
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
751

752
        if type(doc_to_text) == str:
753
            if doc_to_text in self.features:
754
755
756
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
757
758
759
                return doc[doc_to_text]
            else:
                return utils.apply_template(doc_to_text, doc)
760
        elif callable(doc_to_text):
761
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
762
        # Used when applying a Promptsource template
763
        elif hasattr(doc_to_text, "apply"):
764
            return doc_to_text.apply(doc)[0]
765
        else:
766
            print(type(doc_to_text))
767
            raise TypeError
768
769

    def doc_to_target(self, doc):
770
771
772

        if self.prompt is not None:
            doc_to_target = self.prompt
773
774
775
        else:
            doc_to_target = self._config.doc_to_target

776
        if type(doc_to_target) == str:
777
            if doc_to_target in self.features:
778
779
780
781
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
782
783
            else:
                return utils.apply_template(doc_to_target, doc)
784
        elif callable(doc_to_target):
785
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
786
        # Used when applying a Promptsource template
787
788
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
789
790
        else:
            raise TypeError
791

792
    def gold_alias(self, doc):
793
794
795
796
797
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
798
        if self._config.gold_alias is not None:
799
800
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
801
            return self.doc_to_target(doc)
802
803
804
805
806
807
808
809
810
811

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

812
813
    def construct_requests(self, doc, ctx, **kwargs):

814
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
815
            arguments = (ctx, self.doc_to_target(doc))
816
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
817
            arguments = (self.doc_to_target(doc),)
818
        elif self.OUTPUT_TYPE == "multiple_choice":
819
820
821
822

            choices = self.doc_to_choice(doc)
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
823
                cont = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
824
                arguments = [(ctx, " {}".format(cont)) for ctx in choices]
825
            else:
826
                # Otherwise they are placed in the continuation
lintangsutawika's avatar
lintangsutawika committed
827
                arguments = [(ctx, " {}".format(cont)) for cont in choices]
828

829
            request_list = [
830
831
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
832
                    doc=doc,
833
                    arguments=arg,
834
                    idx=i,
835
836
                    **kwargs,
                )
837
                for i, arg in enumerate(arguments)
838
            ]
839
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
840
            if "acc_mutual_info" in self._metric_fn_list.keys():
841
842
843
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
844
                # here mutual info refers to calculating
845
846
847
848
849
850
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
851
                            doc=doc,
852
                            arguments=("", "{}".format(choice)),
853
854
855
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
856
                        for i, choice in enumerate(choices)
857
858
859
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
860

861
        elif self.OUTPUT_TYPE == "greedy_until":
862
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
863

864
865
866
867
        elif self.OUTPUT_TYPE == "winograd_schema":
            # similar to multiple_choice task type except each request contains
            # multiple differing contexts with the same continuation

868
            contexts = self.doc_to_choice(doc)
869
            choice = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
870

871
872
873
874
875
876
877
878
879
880
            request_list = [
                Instance(
                    request_type="loglikelihood",
                    doc=doc,
                    arguments=(context, " {}".format(choice)),
                    idx=i,
                    **kwargs,
                )
                for i, context in enumerate(contexts)
            ]
lintangsutawika's avatar
lintangsutawika committed
881

882
883
            return request_list

lintangsutawika's avatar
lintangsutawika committed
884
        return Instance(
lintangsutawika's avatar
lintangsutawika committed
885
886
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
887
888
889

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
890
891
892
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

893
        result_dict = {}
894
        use_metric = list(self._metric_fn_list.keys())
895
896
897
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
898
899
900
901
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
902
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
903
            (loglikelihood,) = results
904
905
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
906
            return {
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
922
            }
923
        elif self.OUTPUT_TYPE == "multiple_choice":
924
925

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
926

927
            # retrieve choices in List[str] form, to compute choice lengths, etc.
928
            choices = self.doc_to_choice(doc)
929
930
            completion_len = np.array([float(len(i)) for i in choices])

931
932
            if (
                2 * len(choices) == len(lls)
933
                and "acc_mutual_info" in self._metric_fn_list.keys()
934
935
936
937
938
939
940
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
941

942
943
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
944

945
946
            if self.multiple_input:
                gold = self.doc_to_text(doc)
947
            else:
948
                gold = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
949

950
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
951
952
953
954
955
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
956
957

            result_dict = {
958
                **({"acc": acc} if "acc" in use_metric else {}),
959
960
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
961
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
962
963
            }

964
            if "exact_match" in self._metric_fn_list.keys():
965
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
966
                is_greedy = is_greedy[gold]  # take value for the gold answer
967
968
                result_dict["exact_match"] = int(is_greedy)

969
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
970
971
972
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
973
974
975
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
        elif self.OUTPUT_TYPE == "winograd_schema":

            lls, is_greedy = zip(*results)
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

            pred = np.argmax(lls)
            acc = 1.0 if np.argmax(lls) == gold else 0.0

            result_dict = {
                **({"acc": acc} if "acc" in use_metric else {}),
            }

991
992
993
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
994
                gold = self.gold_alias(doc)
995
996
997
            else:
                gold = self.doc_to_target(doc)

998
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
999
                _dict = self._metric_fn_list[key](
1000
                    references=gold if self.multiple_target else [gold],
haileyschoelkopf's avatar
haileyschoelkopf committed
1001
1002
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
1003
                )
1004

lintangsutawika's avatar
lintangsutawika committed
1005
                result_dict = {**result_dict, **_dict}
1006
        else:
lintangsutawika's avatar
lintangsutawika committed
1007
1008
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1009
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', 'multiple_choice' or 'winograd_schema' ",
1010
            )
1011
1012
1013
1014
1015
1016
1017

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1018
        return self._higher_is_better
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
1029
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1030
1031
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1032
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1033
                doc=doc,
1034
                arguments=(ctx, " {}".format(choice)),
1035
                idx=i,
1036
1037
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1038
1039
            for i, choice in enumerate(doc["choices"])
        ]
1040
1041

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
1042
1043
1044
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1069
class PerplexityTask(Task):
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
1080
    def fewshot_context(self, doc, num_fewshot, rnd=None):
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1109
1110
1111
1112
1113
1114
1115
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1116
1117
1118

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1119
1120
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))