utils.py 17.5 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
11
from dataclasses import asdict, is_dataclass
12
from itertools import islice
13
from pathlib import Path
Baber Abbasi's avatar
Baber Abbasi committed
14
from typing import Any, Callable, Generator, List, Optional, Tuple
15

Lintang Sutawika's avatar
Lintang Sutawika committed
16
import numpy as np
17
import yaml
18
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
19

Baber's avatar
Baber committed
20
21
from lm_eval.api.instance import Instance

lintangsutawika's avatar
lintangsutawika committed
22

23
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
24

25
26
27
28
29
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
30

Lintang Sutawika's avatar
Lintang Sutawika committed
31
32
def setup_logging(verbosity=logging.INFO):
    # Configure the root logger
Baber Abbasi's avatar
Baber Abbasi committed
33
34
35
36
37
38
39
40
41
42
43
    class CustomFormatter(logging.Formatter):
        def format(self, record):
            if record.name.startswith("lm_eval."):
                record.name = record.name[len("lm_eval.") :]
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Lintang Sutawika's avatar
Lintang Sutawika committed
44
45
46
47
48
49
50
51
52
53
54
    log_level = os.environ.get("LOGLEVEL", verbosity) or verbosity

    level_map = {
        "DEBUG": logging.DEBUG,
        "INFO": logging.INFO,
        "WARNING": logging.WARNING,
        "ERROR": logging.ERROR,
        "CRITICAL": logging.CRITICAL,
    }

    log_level = level_map.get(str(log_level).upper(), logging.INFO)
Baber Abbasi's avatar
Baber Abbasi committed
55

Lintang Sutawika's avatar
Lintang Sutawika committed
56
    if not logging.root.handlers:
Baber Abbasi's avatar
Baber Abbasi committed
57
58
59
60
61
62
63
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)

        root_logger = logging.getLogger()
        root_logger.addHandler(handler)
        root_logger.setLevel(log_level)

Lintang Sutawika's avatar
Lintang Sutawika committed
64
65
66
67
68
69
70
71
        if log_level == logging.DEBUG:
            third_party_loggers = ["urllib3", "filelock", "fsspec"]
            for logger_name in third_party_loggers:
                logging.getLogger(logger_name).setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(log_level)


72
73
74
75
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


76
77
78
79
80
81
82
83
84
85
86
87
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
88
89
90
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
91
92
93
94
95
96
97
98

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
99
100
101
102
103
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
104
105
106
107
108
109
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
110
111


112
113
114
115
116
117
118
119
120
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


121
122
123
124
125
126
127
128
129
130
131
132
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber Abbasi's avatar
Baber Abbasi committed
133
def simple_parse_args_string(args_string: Optional[str]) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
134
135
136
137
138
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
139
140
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
141
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
142
143
    if not args_string:
        return {}
144
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
145
    args_dict = {
146
147
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
148
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
149
    return args_dict
Leo Gao's avatar
Leo Gao committed
150

Fabrizio Milo's avatar
Fabrizio Milo committed
151

Leo Gao's avatar
Leo Gao committed
152
153
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
154
        yield from iter
Leo Gao's avatar
Leo Gao committed
155
156


157
158
159
160
161
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
162

163
164
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
165

gakada's avatar
gakada committed
166
167
168
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
169
    if isinstance(patterns, str):
170
171
        patterns = [patterns]

gakada's avatar
gakada committed
172
173
174
175
176
177
178
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
179
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
180
181
182
183
184
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber Abbasi's avatar
Baber Abbasi committed
185
def general_detokenize(string) -> str:
Leo Gao's avatar
Leo Gao committed
186
187
188
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
189
190
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
191
    string = re.sub(r" (['.,])", r"\1", string)
192
193
194
    return string


195
196
197
198
199
200
201
202
203
204
205
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
206
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


def get_latest_filename(filenames: List[str]) -> str:
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


def get_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


def get_sample_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


244
245
246
def get_rolling_token_windows(
    token_list: List[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[Tuple[List[int], List[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
273
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
274
275
276
277
278
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
279

Jason Phang's avatar
Jason Phang committed
280
        yield (
lintangsutawika's avatar
lintangsutawika committed
281
282
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
283
284
285
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
286

287
288
289
def make_disjoint_window(
    pair: Tuple[List[int], List[int]],
) -> Tuple[List[int], List[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
290
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
291
    a, b = pair
292
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
293

Jason Phang's avatar
Jason Phang committed
294

295
296
297
298
299
300
301
302
303
304
305
306
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


307
class Reorderer:
baberabb's avatar
baberabb committed
308
309
310
311
312
313
314
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
315
316
317
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
318
319
320
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
321
322
323
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
324

325
    def get_reordered(self):
baberabb's avatar
baberabb committed
326
327
328
329
330
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
331
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
332

333
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
334
335
336
337
338
339
340
341
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
342
343
344
345
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
346
            for ind in inds:
347
348
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
349

350
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
351

352
353
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
354

Lintang Sutawika's avatar
Lintang Sutawika committed
355
def make_table(result_dict, column: str = "results", sort_results: bool = False):
356
    """Generate table of results."""
357
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
358

lintangsutawika's avatar
lintangsutawika committed
359
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
360
361
362
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
363

lintangsutawika's avatar
lintangsutawika committed
364
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
365
        column_name,
lintangsutawika's avatar
lintangsutawika committed
366
367
        "Version",
        "Filter",
368
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
369
        "Metric",
370
        "",
lintangsutawika's avatar
lintangsutawika committed
371
372
373
374
        "Value",
        "",
        "Stderr",
    ]
375

lintangsutawika's avatar
lintangsutawika committed
376
377
378
379
380
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

381
382
    values = []

383
384
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
385
386
387
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
388
389
390
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
391
392
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
393
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
394
395
396
397

        if "alias" in dic:
            k = dic.pop("alias")

398
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
399
        metric_items = sorted(metric_items)
400
401

        for (mf), v in metric_items:
402
            m, _, f = mf.partition(",")
403
404
405
            if m.endswith("_stderr"):
                continue

406
407
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

Lintang Sutawika's avatar
Lintang Sutawika committed
408
409
            v = "%.4f" % v if isinstance(v, float) else v

410
            if m + "_stderr" + "," + f in dic:
Baber's avatar
Baber committed
411
412
413
414
415
416
417
                try:
                    se = dic[m + "_stderr" + "," + f]
                    se = "   N/A" if se == "N/A" else "%.4f" % se
                    values.append([k, version, f, n, m, hib, v, "±", se])
                except:  # noqa: E722
                    values.append([k, version, f, n, m, hib, v, "", ""])

418
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
419
                values.append([k, version, f, n, m, hib, v, "", ""])
420
421
422
423
424
425
426
427
428
429
430
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


431
432
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
433
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
434
435
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
436

437
438
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
439
440
441
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
442
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
443
444
                "lm-evaluation-harness!"
            )
445
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
446

447
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
448

Fabrizio Milo's avatar
Fabrizio Milo committed
449

450
451
452
453
def ignore_constructor(loader, node):
    return node


454
def import_function(loader: yaml.Loader, node, yaml_path: Path):
lintangsutawika's avatar
lintangsutawika committed
455
456
    function_name = loader.construct_scalar(node)

lintangsutawika's avatar
lintangsutawika committed
457
    *module_name, function_name = function_name.split(".")
458
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
459
        module_name = ".".join(module_name)
460
    module_path = yaml_path.parent / f"{module_name}.py"
lintangsutawika's avatar
lintangsutawika committed
461

462
463
464
465
    spec = importlib.util.spec_from_file_location(module_name, module_path.as_posix())

    if spec is None:
        raise ImportError(f"Could not import module {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
466
    module = importlib.util.module_from_spec(spec)
467
468
469

    if spec.loader is None:
        raise ImportError(f"Module loader is None, {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
470
471
472
473
474
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
475

476
477
478
479
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
480
481
482
483
        if yaml_path is None:
            raise ValueError("yaml_path must be provided if mode is 'full'.")
        # Attach yaml_path to the import function so that it can be used later
        constructor_fn = functools.partial(import_function, yaml_path=Path(yaml_path))
lintangsutawika's avatar
lintangsutawika committed
484

485
    loader = yaml.CLoader if yaml.__with_libyaml__ else yaml.FullLoader
486
    # Add the import_function constructor to the YAML loader
487
    yaml.add_constructor("!function", constructor_fn, Loader=loader)
488
489
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
490
            yaml_config = yaml.load(file, Loader=loader)
lintangsutawika's avatar
lintangsutawika committed
491

lintangsutawika's avatar
lintangsutawika committed
492
493
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
494
495
496
497
498
499
500

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

501
        if isinstance(include_path, str):
502
503
504
505
506
507
508
509
510
511
512
513
514
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
515
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
516
517
518
519
520
521
522
523
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
524
525


Ethan Smith's avatar
Ethan Smith committed
526
def regex_replace(string, pattern, repl, count: int = 0):
527
528
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
529

lintangsutawika's avatar
lintangsutawika committed
530

531
532
533
env = Environment(
    loader=BaseLoader, undefined=StrictUndefined, keep_trailing_newline=True
)
534
env.filters["regex_replace"] = regex_replace
535
536


baberabb's avatar
baberabb committed
537
def apply_template(template: str, doc: dict) -> str:
538
539
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
540
541


542
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
543
544
545
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
546
547
548
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
549
550
551
552
553
554
555
556
557
558


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
Baber's avatar
Baber committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599


def create_sample_log(
    doc: dict,
    doc_id: int,
    target: Any,
    requests: list[Instance],
    metric_names: [dict],
    filter_key: str,
) -> dict:
    return {
        "doc_id": doc_id,
        "doc": doc,
        "target": target,
        "arguments": [req.args for req in requests],
        "resps": [req.resps for req in requests],
        "filtered_resps": [req.filtered_resps[filter_key] for req in requests],
        "filter": filter_key,
        "metrics": metric_names,
        "doc_hash": hash_string(
            json.dumps(
                requests[0].doc,
                indent=2,
                default=handle_non_serializable,
                ensure_ascii=False,
            )
        ),
        "prompt_hash": hash_string(requests[0].arguments[0]),
        "target_hash": hash_string(str(target)),
    }


def pass_at_k(n: int, c: int, k: int) -> float:
    """
    :param n: total number of samples
    :param c: number of correct samples
    :param k: k in pass@$k$
    """
    if n - c < k:
        return 1.0
    return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))