utils.py 15.9 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
Baber's avatar
Baber committed
11
from collections.abc import Generator
12
from dataclasses import asdict, is_dataclass
13
from itertools import islice
Baber's avatar
Baber committed
14
from typing import Any, Callable, List, Optional, Tuple
15

Lintang Sutawika's avatar
Lintang Sutawika committed
16
import numpy as np
Baber's avatar
Baber committed
17
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
18

lintangsutawika's avatar
lintangsutawika committed
19

20
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
21

22
23
24
25
26
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def wrap_text(string: str, width: int = 140, **kwargs) -> Optional[str]:
    """
    Wraps the given string to the specified width.
    """
    import textwrap

    return textwrap.fill(
        inspect.cleandoc(string),
        width=width,
        initial_indent="",
        subsequent_indent=" " * 8,
        break_long_words=False,
        break_on_hyphens=False,
        **kwargs,
    )


Lintang Sutawika's avatar
Lintang Sutawika committed
45
46
def setup_logging(verbosity=logging.INFO):
    # Configure the root logger
Baber Abbasi's avatar
Baber Abbasi committed
47
48
    class CustomFormatter(logging.Formatter):
        def format(self, record):
Baber's avatar
Baber committed
49
            record.name = record.name.removeprefix("lm_eval.")
Baber Abbasi's avatar
Baber Abbasi committed
50
51
52
53
54
55
56
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Lintang Sutawika's avatar
Lintang Sutawika committed
57
58
59
60
61
62
63
64
65
66
67
    log_level = os.environ.get("LOGLEVEL", verbosity) or verbosity

    level_map = {
        "DEBUG": logging.DEBUG,
        "INFO": logging.INFO,
        "WARNING": logging.WARNING,
        "ERROR": logging.ERROR,
        "CRITICAL": logging.CRITICAL,
    }

    log_level = level_map.get(str(log_level).upper(), logging.INFO)
Baber Abbasi's avatar
Baber Abbasi committed
68

Lintang Sutawika's avatar
Lintang Sutawika committed
69
    if not logging.root.handlers:
Baber Abbasi's avatar
Baber Abbasi committed
70
71
72
73
74
75
76
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)

        root_logger = logging.getLogger()
        root_logger.addHandler(handler)
        root_logger.setLevel(log_level)

Lintang Sutawika's avatar
Lintang Sutawika committed
77
78
79
80
81
82
83
84
        if log_level == logging.DEBUG:
            third_party_loggers = ["urllib3", "filelock", "fsspec"]
            for logger_name in third_party_loggers:
                logging.getLogger(logger_name).setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(log_level)


85
86
87
88
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


89
90
91
92
93
94
95
96
97
98
99
100
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
101
102
103
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
104
105
106
107
108
109
110
111

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
112
113
114
115
116
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
117
118
119
120
121
122
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
123
124


125
126
127
128
129
130
131
132
133
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


134
135
136
137
138
139
140
141
142
143
144
145
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber Abbasi's avatar
Baber Abbasi committed
146
def simple_parse_args_string(args_string: Optional[str]) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
147
148
149
150
151
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
152
153
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
154
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
155
156
    if not args_string:
        return {}
157
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
158
    args_dict = {
159
160
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
161
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
162
    return args_dict
Leo Gao's avatar
Leo Gao committed
163

Fabrizio Milo's avatar
Fabrizio Milo committed
164

Leo Gao's avatar
Leo Gao committed
165
166
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
167
        yield from iter
Leo Gao's avatar
Leo Gao committed
168
169


170
171
172
173
174
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
175

176
177
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
178

gakada's avatar
gakada committed
179
180
181
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
182
    if isinstance(patterns, str):
183
184
        patterns = [patterns]

gakada's avatar
gakada committed
185
186
187
188
189
190
191
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
192
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
193
194
195
196
197
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber Abbasi's avatar
Baber Abbasi committed
198
def general_detokenize(string) -> str:
Leo Gao's avatar
Leo Gao committed
199
200
201
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
202
203
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
204
    string = re.sub(r" (['.,])", r"\1", string)
205
206
207
    return string


208
209
210
211
212
213
214
215
216
217
218
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
219
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


def get_latest_filename(filenames: List[str]) -> str:
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


def get_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


def get_sample_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


257
258
259
def get_rolling_token_windows(
    token_list: List[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[Tuple[List[int], List[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
286
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
287
288
289
290
291
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
292

Jason Phang's avatar
Jason Phang committed
293
        yield (
lintangsutawika's avatar
lintangsutawika committed
294
295
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
296
297
298
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
299

300
301
302
def make_disjoint_window(
    pair: Tuple[List[int], List[int]],
) -> Tuple[List[int], List[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
303
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
304
    a, b = pair
305
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
306

Jason Phang's avatar
Jason Phang committed
307

308
309
310
311
312
313
314
315
316
317
318
319
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


320
class Reorderer:
baberabb's avatar
baberabb committed
321
322
323
324
325
326
327
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
328
329
330
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
331
332
333
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
334
335
336
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
337

338
    def get_reordered(self):
baberabb's avatar
baberabb committed
339
340
341
342
343
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
344
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
345

346
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
347
348
349
350
351
352
353
354
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
355
356
357
358
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
359
            for ind in inds:
360
361
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
362

363
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
364

365
366
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
367

Lintang Sutawika's avatar
Lintang Sutawika committed
368
def make_table(result_dict, column: str = "results", sort_results: bool = False):
369
    """Generate table of results."""
370
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
371

lintangsutawika's avatar
lintangsutawika committed
372
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
373
374
375
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
376

lintangsutawika's avatar
lintangsutawika committed
377
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
378
        column_name,
lintangsutawika's avatar
lintangsutawika committed
379
380
        "Version",
        "Filter",
381
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
382
        "Metric",
383
        "",
lintangsutawika's avatar
lintangsutawika committed
384
385
386
387
        "Value",
        "",
        "Stderr",
    ]
388

lintangsutawika's avatar
lintangsutawika committed
389
390
391
392
393
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

394
395
    values = []

396
397
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
398
399
400
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
401
402
403
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
404
405
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
406
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
407
408
409
410

        if "alias" in dic:
            k = dic.pop("alias")

411
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
412
        metric_items = sorted(metric_items)
413
414

        for (mf), v in metric_items:
415
            m, _, f = mf.partition(",")
416
417
418
            if m.endswith("_stderr"):
                continue

419
420
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

Lintang Sutawika's avatar
Lintang Sutawika committed
421
422
            v = "%.4f" % v if isinstance(v, float) else v

423
424
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Lintang Sutawika's avatar
Lintang Sutawika committed
425
                se = "   N/A" if se == "N/A" else "%.4f" % se
Lintang Sutawika's avatar
Lintang Sutawika committed
426
                values.append([k, version, f, n, m, hib, v, "±", se])
427
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
428
                values.append([k, version, f, n, m, hib, v, "", ""])
429
430
431
432
433
434
435
436
437
438
439
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


440
441
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
442
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
443
444
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
445

446
447
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
448
449
450
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
451
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
452
453
                "lm-evaluation-harness!"
            )
454
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
455

456
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
457

Fabrizio Milo's avatar
Fabrizio Milo committed
458

459
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
460
461
462
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
463
464
465
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
466
467
468
469
470
471
472
473
474
475


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504


def convert_pil_to_hash(value):
    from io import BytesIO

    img_bytes = BytesIO()
    value.save(img_bytes, format="PNG")
    return hashlib.sha256(str(img_bytes).encode()).hexdigest()


def convert_bytes_to_hash(value):
    return hashlib.sha256(str(value).encode()).hexdigest()


def hash_dict_images(data_dict):
    """
    Create a deep copy of `data_dict` where all bytes and PIL.Image.Image values
    are replaced by their respective hashes using the provided converter functions.

    Parameters:
        data_dict (dict): The input dictionary with arbitrary nesting of dicts and lists.

    Returns:
        dict: A new dictionary with the same structure as `data_dict`, but with all
              bytes and PIL.Image.Image objects replaced by their hashes.
    """

    def _process_value(value):
        # Bytes -> hash
Baber Abbasi's avatar
Baber Abbasi committed
505
506
        from PIL import Image

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        if isinstance(value, (bytes, bytearray)):
            return convert_bytes_to_hash(value)
        # PIL Image -> hash
        if isinstance(value, Image.Image):
            return convert_pil_to_hash(value)
        # Nested dictionary -> recurse
        if isinstance(value, dict):
            return {k: _process_value(v) for k, v in value.items()}
        # List or tuple -> recurse, preserving type
        if isinstance(value, list):
            return [_process_value(v) for v in value]
        if isinstance(value, tuple):
            return tuple(_process_value(v) for v in value)
        # Other types remain unchanged
        return value

    # Ensure the top-level is a dict
    if not isinstance(data_dict, dict):
        raise TypeError("Input must be a dictionary")

Baber Abbasi's avatar
Baber Abbasi committed
527
528
529
530
531
    return (
        {key: _process_value(val) for key, val in data_dict.items()}
        if importlib.util.find_spec("PIL")
        else data_dict
    )
Baber's avatar
Baber committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553


def regex_replace(string, pattern, repl, count: int = 0):
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)


@functools.lru_cache(maxsize=256)
def _compile_tpl(src: str):
    return apply_template._env.from_string(src)


def apply_template(template: str, doc: dict) -> str:
    if not hasattr(apply_template, "_env"):
        apply_template._env = Environment(
            loader=BaseLoader(),
            undefined=StrictUndefined,
            keep_trailing_newline=True,
        )
        apply_template._env.filters["regex_replace"] = regex_replace

    return _compile_tpl(template).render(**doc)