utils.py 14.8 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
11
from dataclasses import asdict, is_dataclass
12
from itertools import islice
13
from typing import Any, Callable, Generator, List, Optional, Tuple
14

Lintang Sutawika's avatar
Lintang Sutawika committed
15
import numpy as np
sdtblck's avatar
sdtblck committed
16

lintangsutawika's avatar
lintangsutawika committed
17

18
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
19

20
21
22
23
24
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
25

Lintang Sutawika's avatar
Lintang Sutawika committed
26
27
def setup_logging(verbosity=logging.INFO):
    # Configure the root logger
Baber Abbasi's avatar
Baber Abbasi committed
28
29
30
31
32
33
34
35
36
37
38
    class CustomFormatter(logging.Formatter):
        def format(self, record):
            if record.name.startswith("lm_eval."):
                record.name = record.name[len("lm_eval.") :]
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Lintang Sutawika's avatar
Lintang Sutawika committed
39
40
41
42
43
44
45
46
47
48
49
    log_level = os.environ.get("LOGLEVEL", verbosity) or verbosity

    level_map = {
        "DEBUG": logging.DEBUG,
        "INFO": logging.INFO,
        "WARNING": logging.WARNING,
        "ERROR": logging.ERROR,
        "CRITICAL": logging.CRITICAL,
    }

    log_level = level_map.get(str(log_level).upper(), logging.INFO)
Baber Abbasi's avatar
Baber Abbasi committed
50

Lintang Sutawika's avatar
Lintang Sutawika committed
51
    if not logging.root.handlers:
Baber Abbasi's avatar
Baber Abbasi committed
52
53
54
55
56
57
58
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)

        root_logger = logging.getLogger()
        root_logger.addHandler(handler)
        root_logger.setLevel(log_level)

Lintang Sutawika's avatar
Lintang Sutawika committed
59
60
61
62
63
64
65
66
        if log_level == logging.DEBUG:
            third_party_loggers = ["urllib3", "filelock", "fsspec"]
            for logger_name in third_party_loggers:
                logging.getLogger(logger_name).setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(log_level)


67
68
69
70
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


71
72
73
74
75
76
77
78
79
80
81
82
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
83
84
85
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
86
87
88
89
90
91
92
93

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
94
95
96
97
98
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
99
100
101
102
103
104
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
105
106


107
108
109
110
111
112
113
114
115
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


116
117
118
119
120
121
122
123
124
125
126
127
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber Abbasi's avatar
Baber Abbasi committed
128
def simple_parse_args_string(args_string: Optional[str]) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
129
130
131
132
133
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
134
135
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
136
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
137
138
    if not args_string:
        return {}
139
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
140
    args_dict = {
141
142
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
143
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
144
    return args_dict
Leo Gao's avatar
Leo Gao committed
145

Fabrizio Milo's avatar
Fabrizio Milo committed
146

Leo Gao's avatar
Leo Gao committed
147
148
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
149
        yield from iter
Leo Gao's avatar
Leo Gao committed
150
151


152
153
154
155
156
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
157

158
159
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
160

gakada's avatar
gakada committed
161
162
163
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
164
    if isinstance(patterns, str):
165
166
        patterns = [patterns]

gakada's avatar
gakada committed
167
168
169
170
171
172
173
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
174
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
175
176
177
178
179
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber Abbasi's avatar
Baber Abbasi committed
180
def general_detokenize(string) -> str:
Leo Gao's avatar
Leo Gao committed
181
182
183
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
184
185
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
186
    string = re.sub(r" (['.,])", r"\1", string)
187
188
189
    return string


190
191
192
193
194
195
196
197
198
199
200
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
201
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


def get_latest_filename(filenames: List[str]) -> str:
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


def get_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


def get_sample_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


239
240
241
def get_rolling_token_windows(
    token_list: List[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[Tuple[List[int], List[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
268
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
269
270
271
272
273
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
274

Jason Phang's avatar
Jason Phang committed
275
        yield (
lintangsutawika's avatar
lintangsutawika committed
276
277
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
278
279
280
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
281

282
283
284
def make_disjoint_window(
    pair: Tuple[List[int], List[int]],
) -> Tuple[List[int], List[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
285
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
286
    a, b = pair
287
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
288

Jason Phang's avatar
Jason Phang committed
289

290
291
292
293
294
295
296
297
298
299
300
301
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


302
class Reorderer:
baberabb's avatar
baberabb committed
303
304
305
306
307
308
309
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
310
311
312
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
313
314
315
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
316
317
318
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
319

320
    def get_reordered(self):
baberabb's avatar
baberabb committed
321
322
323
324
325
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
326
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
327

328
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
329
330
331
332
333
334
335
336
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
337
338
339
340
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
341
            for ind in inds:
342
343
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
344

345
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
346

347
348
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
349

Lintang Sutawika's avatar
Lintang Sutawika committed
350
def make_table(result_dict, column: str = "results", sort_results: bool = False):
351
    """Generate table of results."""
352
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
353

lintangsutawika's avatar
lintangsutawika committed
354
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
355
356
357
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
358

lintangsutawika's avatar
lintangsutawika committed
359
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
360
        column_name,
lintangsutawika's avatar
lintangsutawika committed
361
362
        "Version",
        "Filter",
363
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
364
        "Metric",
365
        "",
lintangsutawika's avatar
lintangsutawika committed
366
367
368
369
        "Value",
        "",
        "Stderr",
    ]
370

lintangsutawika's avatar
lintangsutawika committed
371
372
373
374
375
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

376
377
    values = []

378
379
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
380
381
382
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
383
384
385
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
386
387
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
388
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
389
390
391
392

        if "alias" in dic:
            k = dic.pop("alias")

393
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
394
        metric_items = sorted(metric_items)
395
396

        for (mf), v in metric_items:
397
            m, _, f = mf.partition(",")
398
399
400
            if m.endswith("_stderr"):
                continue

401
402
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

Lintang Sutawika's avatar
Lintang Sutawika committed
403
404
            v = "%.4f" % v if isinstance(v, float) else v

405
406
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Lintang Sutawika's avatar
Lintang Sutawika committed
407
                se = "   N/A" if se == "N/A" else "%.4f" % se
Lintang Sutawika's avatar
Lintang Sutawika committed
408
                values.append([k, version, f, n, m, hib, v, "±", se])
409
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
410
                values.append([k, version, f, n, m, hib, v, "", ""])
411
412
413
414
415
416
417
418
419
420
421
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


422
423
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
424
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
425
426
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
427

428
429
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
430
431
432
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
433
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
434
435
                "lm-evaluation-harness!"
            )
436
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
437

438
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
439

Fabrizio Milo's avatar
Fabrizio Milo committed
440

441
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
442
443
444
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
445
446
447
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
448
449
450
451
452
453
454
455
456
457


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486


def convert_pil_to_hash(value):
    from io import BytesIO

    img_bytes = BytesIO()
    value.save(img_bytes, format="PNG")
    return hashlib.sha256(str(img_bytes).encode()).hexdigest()


def convert_bytes_to_hash(value):
    return hashlib.sha256(str(value).encode()).hexdigest()


def hash_dict_images(data_dict):
    """
    Create a deep copy of `data_dict` where all bytes and PIL.Image.Image values
    are replaced by their respective hashes using the provided converter functions.

    Parameters:
        data_dict (dict): The input dictionary with arbitrary nesting of dicts and lists.

    Returns:
        dict: A new dictionary with the same structure as `data_dict`, but with all
              bytes and PIL.Image.Image objects replaced by their hashes.
    """

    def _process_value(value):
        # Bytes -> hash
Baber Abbasi's avatar
Baber Abbasi committed
487
488
        from PIL import Image

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        if isinstance(value, (bytes, bytearray)):
            return convert_bytes_to_hash(value)
        # PIL Image -> hash
        if isinstance(value, Image.Image):
            return convert_pil_to_hash(value)
        # Nested dictionary -> recurse
        if isinstance(value, dict):
            return {k: _process_value(v) for k, v in value.items()}
        # List or tuple -> recurse, preserving type
        if isinstance(value, list):
            return [_process_value(v) for v in value]
        if isinstance(value, tuple):
            return tuple(_process_value(v) for v in value)
        # Other types remain unchanged
        return value

    # Ensure the top-level is a dict
    if not isinstance(data_dict, dict):
        raise TypeError("Input must be a dictionary")

Baber Abbasi's avatar
Baber Abbasi committed
509
510
511
512
513
    return (
        {key: _process_value(val) for key, val in data_dict.items()}
        if importlib.util.find_spec("PIL")
        else data_dict
    )