utils.py 15.3 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
11
from dataclasses import asdict, is_dataclass
12
from itertools import islice
Baber's avatar
Baber committed
13
from typing import Any, Callable, Generator, List, Optional, Tuple
14

Lintang Sutawika's avatar
Lintang Sutawika committed
15
import numpy as np
16
import yaml
17
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
18

lintangsutawika's avatar
lintangsutawika committed
19

20
21
22
23
24
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
25
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
26

27
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
28

29
30
31
32
33
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
34

35
36
37
38
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


39
40
41
42
43
44
45
46
47
48
49
50
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
51
52
53
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
54
55
56
57
58
59
60
61

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
62
63
64
65
66
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
67
68
69
70
71
72
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
73
74


75
76
77
78
79
80
81
82
83
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


84
85
86
87
88
89
90
91
92
93
94
95
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber's avatar
Baber committed
96
def simple_parse_args_string(args_string: Optional[str]) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
97
98
99
100
101
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber's avatar
Baber committed
102
103
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
104
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
105
106
    if not args_string:
        return {}
107
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
108
    args_dict = {
109
110
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
111
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
112
    return args_dict
Leo Gao's avatar
Leo Gao committed
113

Fabrizio Milo's avatar
Fabrizio Milo committed
114

Baber's avatar
Baber committed
115
116
def parse_keyed_list_string(s: str) -> dict[str, list]:
    """Parse a string of key-value pairs into a dictionary where all values are lists."""
Baber's avatar
Baber committed
117
118
    if s is None:
        return {}
Baber's avatar
Baber committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    result = {}
    current_key = None
    values = []

    parts = s.split(",")

    for part in parts:
        if "=" in part:
            # Save previous key's values
            if current_key is not None:
                result[current_key] = values

            # Start new key-value pair
            current_key, value = part.split("=")
            values = [handle_arg_string(value)]
        else:
            values.append(handle_arg_string(part))

    # Add the last key-value pair
    if current_key is not None:
        result[current_key] = values

    return result


Leo Gao's avatar
Leo Gao committed
144
145
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
146
        yield from iter
Leo Gao's avatar
Leo Gao committed
147
148


149
150
151
152
153
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
154

155
156
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
157

gakada's avatar
gakada committed
158
159
160
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
161
    if isinstance(patterns, str):
162
163
        patterns = [patterns]

gakada's avatar
gakada committed
164
165
166
167
168
169
170
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Lintang Sutawika's avatar
Lintang Sutawika committed
171
172
173
174
175
176
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Leo Gao's avatar
Leo Gao committed
177
178
179
180
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
181
182
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
183
    string = re.sub(r" (['.,])", r"\1", string)
184
185
186
    return string


187
188
189
190
191
192
193
194
195
196
197
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
198
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


def get_latest_filename(filenames: List[str]) -> str:
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


def get_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


def get_sample_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


236
237
238
def get_rolling_token_windows(
    token_list: List[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[Tuple[List[int], List[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
265
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
266
267
268
269
270
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
271

Jason Phang's avatar
Jason Phang committed
272
        yield (
lintangsutawika's avatar
lintangsutawika committed
273
274
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
275
276
277
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
278

279
280
281
def make_disjoint_window(
    pair: Tuple[List[int], List[int]],
) -> Tuple[List[int], List[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
282
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
283
    a, b = pair
284
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
285

Jason Phang's avatar
Jason Phang committed
286

287
288
289
290
291
292
293
294
295
296
297
298
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


299
class Reorderer:
baberabb's avatar
baberabb committed
300
301
302
303
304
305
306
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
307
308
309
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
310
311
312
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
313
314
315
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
316

317
    def get_reordered(self):
baberabb's avatar
baberabb committed
318
319
320
321
322
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
323
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
324

325
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
326
327
328
329
330
331
332
333
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
334
335
336
337
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
338
            for ind in inds:
339
340
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
341

342
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
343

344
345
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
346

Lintang Sutawika's avatar
Lintang Sutawika committed
347
def make_table(result_dict, column: str = "results", sort_results: bool = False):
348
    """Generate table of results."""
349
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
350

lintangsutawika's avatar
lintangsutawika committed
351
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
352
353
354
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
355

lintangsutawika's avatar
lintangsutawika committed
356
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
357
        column_name,
lintangsutawika's avatar
lintangsutawika committed
358
359
        "Version",
        "Filter",
360
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
361
        "Metric",
362
        "",
lintangsutawika's avatar
lintangsutawika committed
363
364
365
366
        "Value",
        "",
        "Stderr",
    ]
367

lintangsutawika's avatar
lintangsutawika committed
368
369
370
371
372
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

373
374
    values = []

375
376
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
377
378
379
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
380
381
382
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
383
384
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
385
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
386
387
388
389

        if "alias" in dic:
            k = dic.pop("alias")

390
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
391
        metric_items = sorted(metric_items)
392
393

        for (mf), v in metric_items:
394
            m, _, f = mf.partition(",")
395
396
397
            if m.endswith("_stderr"):
                continue

398
399
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

Lintang Sutawika's avatar
Lintang Sutawika committed
400
401
            v = "%.4f" % v if isinstance(v, float) else v

402
403
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Lintang Sutawika's avatar
Lintang Sutawika committed
404
                se = "   N/A" if se == "N/A" else "%.4f" % se
Lintang Sutawika's avatar
Lintang Sutawika committed
405
                values.append([k, version, f, n, m, hib, v, "±", se])
406
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
407
                values.append([k, version, f, n, m, hib, v, "", ""])
408
409
410
411
412
413
414
415
416
417
418
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


419
420
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
421
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
422
423
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
424

425
426
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
427
428
429
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
430
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
431
432
                "lm-evaluation-harness!"
            )
433
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
434

435
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
436

Fabrizio Milo's avatar
Fabrizio Milo committed
437

438
439
440
441
def ignore_constructor(loader, node):
    return node


lintangsutawika's avatar
lintangsutawika committed
442
443
444
445
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
446
    *module_name, function_name = function_name.split(".")
447
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
448
449
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
450
451
452
453
454
455
456
457

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
458

459
460
461
462
463
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
        constructor_fn = import_function
lintangsutawika's avatar
lintangsutawika committed
464

465
466
    # Add the import_function constructor to the YAML loader
    yaml.add_constructor("!function", constructor_fn)
467
468
469
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
470

lintangsutawika's avatar
lintangsutawika committed
471
472
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
473
474
475
476
477
478
479

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

480
        if isinstance(include_path, str):
481
482
483
484
485
486
487
488
489
490
491
492
493
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
494
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
495
496
497
498
499
500
501
502
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
503
504


Ethan Smith's avatar
Ethan Smith committed
505
def regex_replace(string, pattern, repl, count: int = 0):
506
507
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
508

lintangsutawika's avatar
lintangsutawika committed
509

510
511
512
env = Environment(
    loader=BaseLoader, undefined=StrictUndefined, keep_trailing_newline=True
)
513
env.filters["regex_replace"] = regex_replace
514
515


baberabb's avatar
baberabb committed
516
def apply_template(template: str, doc: dict) -> str:
517
518
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
519
520


521
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
522
523
524
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
525
526
527
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
528
529
530
531
532
533
534
535
536
537


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore