"examples/academic_paper_scripts/detxoify_lm/finetune_gpt.py" did not exist on "b81cad6609c9d91efa5701a3bdc71fc2f007d65b"
utils.py 14.5 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
11
from dataclasses import asdict, is_dataclass
12
from itertools import islice
13
from typing import Any, Callable, Generator, List, Tuple
14

Lintang Sutawika's avatar
Lintang Sutawika committed
15
import numpy as np
16
import yaml
17
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
18

lintangsutawika's avatar
lintangsutawika committed
19

20
21
22
23
24
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
25
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
26

27
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
28

29
30
31
32
33
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
34

35
36
37
38
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
62
63
64
65
66
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
67
68
69
70
71
72
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
73
74


75
76
77
78
79
80
81
82
83
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


84
85
86
87
88
89
90
91
92
93
94
95
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Jason Phang's avatar
gpt3  
Jason Phang committed
96
97
98
99
100
101
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
102
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
103
104
    if not args_string:
        return {}
105
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
106
    args_dict = {
107
108
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
109
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
110
    return args_dict
Leo Gao's avatar
Leo Gao committed
111

Fabrizio Milo's avatar
Fabrizio Milo committed
112

Leo Gao's avatar
Leo Gao committed
113
114
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
115
        yield from iter
Leo Gao's avatar
Leo Gao committed
116
117


118
119
120
121
122
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
123

124
125
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
126

gakada's avatar
gakada committed
127
128
129
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
130
    if isinstance(patterns, str):
131
132
        patterns = [patterns]

gakada's avatar
gakada committed
133
134
135
136
137
138
139
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Lintang Sutawika's avatar
Lintang Sutawika committed
140
141
142
143
144
145
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Leo Gao's avatar
Leo Gao committed
146
147
148
149
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
150
151
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
152
    string = re.sub(r" (['.,])", r"\1", string)
153
154
155
    return string


156
157
158
159
160
161
162
163
164
165
166
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
167
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


def get_latest_filename(filenames: List[str]) -> str:
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


def get_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


def get_sample_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


205
206
207
def get_rolling_token_windows(
    token_list: List[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[Tuple[List[int], List[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
234
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
235
236
237
238
239
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
240

Jason Phang's avatar
Jason Phang committed
241
        yield (
lintangsutawika's avatar
lintangsutawika committed
242
243
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
244
245
246
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
247

248
249
250
def make_disjoint_window(
    pair: Tuple[List[int], List[int]],
) -> Tuple[List[int], List[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
251
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
252
    a, b = pair
253
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
254

Jason Phang's avatar
Jason Phang committed
255

256
257
258
259
260
261
262
263
264
265
266
267
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


268
class Reorderer:
baberabb's avatar
baberabb committed
269
270
271
272
273
274
275
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
276
277
278
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
279
280
281
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
282
283
284
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
285

286
    def get_reordered(self):
baberabb's avatar
baberabb committed
287
288
289
290
291
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
292
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
293

294
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
295
296
297
298
299
300
301
302
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
303
304
305
306
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
307
            for ind in inds:
308
309
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
310

311
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
312

313
314
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
315

Lintang Sutawika's avatar
Lintang Sutawika committed
316
def make_table(result_dict, column: str = "results", sort_results: bool = False):
317
    """Generate table of results."""
318
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
319

lintangsutawika's avatar
lintangsutawika committed
320
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
321
322
323
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
324

lintangsutawika's avatar
lintangsutawika committed
325
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
326
        column_name,
lintangsutawika's avatar
lintangsutawika committed
327
328
        "Version",
        "Filter",
329
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
330
        "Metric",
331
        "",
lintangsutawika's avatar
lintangsutawika committed
332
333
334
335
        "Value",
        "",
        "Stderr",
    ]
336

lintangsutawika's avatar
lintangsutawika committed
337
338
339
340
341
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

342
343
    values = []

344
345
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
346
347
348
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
349
350
351
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
352
353
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
354
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
355
356
357
358

        if "alias" in dic:
            k = dic.pop("alias")

359
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
360
        metric_items = sorted(metric_items)
361
362

        for (mf), v in metric_items:
363
            m, _, f = mf.partition(",")
364
365
366
            if m.endswith("_stderr"):
                continue

367
368
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

Lintang Sutawika's avatar
Lintang Sutawika committed
369
370
            v = "%.4f" % v if isinstance(v, float) else v

371
372
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Lintang Sutawika's avatar
Lintang Sutawika committed
373
                se = "   N/A" if se == "N/A" else "%.4f" % se
Lintang Sutawika's avatar
Lintang Sutawika committed
374
                values.append([k, version, f, n, m, hib, v, "±", se])
375
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
376
                values.append([k, version, f, n, m, hib, v, "", ""])
377
378
379
380
381
382
383
384
385
386
387
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


388
389
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
390
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
391
392
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
393

394
395
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
396
397
398
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
399
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
400
401
                "lm-evaluation-harness!"
            )
402
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
403

404
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
405

Fabrizio Milo's avatar
Fabrizio Milo committed
406

407
408
409
410
def ignore_constructor(loader, node):
    return node


lintangsutawika's avatar
lintangsutawika committed
411
412
413
414
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
415
    *module_name, function_name = function_name.split(".")
416
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
417
418
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
419
420
421
422
423
424
425
426

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
427

428
429
430
431
432
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
        constructor_fn = import_function
lintangsutawika's avatar
lintangsutawika committed
433

434
435
    # Add the import_function constructor to the YAML loader
    yaml.add_constructor("!function", constructor_fn)
436
437
438
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
439

lintangsutawika's avatar
lintangsutawika committed
440
441
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
442
443
444
445
446
447
448

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

449
        if isinstance(include_path, str):
450
451
452
453
454
455
456
457
458
459
460
461
462
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
463
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
464
465
466
467
468
469
470
471
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
472
473


Ethan Smith's avatar
Ethan Smith committed
474
def regex_replace(string, pattern, repl, count: int = 0):
475
476
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
477

lintangsutawika's avatar
lintangsutawika committed
478

479
480
481
env = Environment(
    loader=BaseLoader, undefined=StrictUndefined, keep_trailing_newline=True
)
482
env.filters["regex_replace"] = regex_replace
483
484


baberabb's avatar
baberabb committed
485
def apply_template(template: str, doc: dict) -> str:
486
487
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
488
489


490
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
491
492
493
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
494
495
496
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
497
498
499
500
501
502
503
504
505
506


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore