evaluator.py 31.5 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

Baber Abbasi's avatar
Baber Abbasi committed
3
import itertools
4
import json
5
import logging
6
import os
Baber Abbasi's avatar
Baber Abbasi committed
7
import random
8
import time
9
from collections import defaultdict
Baber's avatar
Baber committed
10
from typing import TYPE_CHECKING, Any, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
11

12
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
13
import torch
lintangsutawika's avatar
lintangsutawika committed
14

lintangsutawika's avatar
lintangsutawika committed
15
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
16
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
17
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
18
import lm_eval.models
19
from lm_eval.caching.cache import delete_cache
20
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    consolidate_group_results,
22
23
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
24
    get_subtask_list,
25
26
27
28
29
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
30
from lm_eval.loggers import EvaluationTracker
31
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
Baber's avatar
fix  
Baber committed
32
from lm_eval.tasks import TaskManager
Baber's avatar
Baber committed
33
from lm_eval.tasks.manager import get_task_dict
34
from lm_eval.utils import (
Baber's avatar
Baber committed
35
    get_logger,
36
    handle_non_serializable,
37
    hash_dict_images,
38
39
40
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
41
    wrap_text,
42
)
43

Fabrizio Milo's avatar
Fabrizio Milo committed
44

45
46
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
47
    from lm_eval.api.task import Task
48

Lintang Sutawika's avatar
Lintang Sutawika committed
49
50
eval_logger = logging.getLogger(__name__)

51

52
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
53
54
def simple_evaluate(
    model,
Baber's avatar
Baber committed
55
    model_args: Optional[Union[str, dict[str, Any]]] = None,
56
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
57
    num_fewshot: Optional[int] = None,
58
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
59
60
61
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
62
63
64
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
65
    limit: Optional[Union[int, float]] = None,
66
    samples: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
67
68
69
70
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
71
72
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
73
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
74
    fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
75
    gen_kwargs: Union[str, dict, None] = None,
76
    task_manager: Optional[TaskManager] = None,
Baber Abbasi's avatar
Baber Abbasi committed
77
    verbosity=None,
Baber Abbasi's avatar
Baber Abbasi committed
78
    predict_only: bool = False,
79
80
81
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
82
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
83
    confirm_run_unsafe_code: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
84
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
85
):
86
    """Instantiate and evaluate a model on a list of tasks.
87

88
89
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
90
91
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
92
        Ignored if `model` argument is a LM object.
93
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
94
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
95
96
    :param num_fewshot: int
        Number of examples in few-shot context
97
    :param batch_size: int or str, optional
98
        Batch size for model
99
100
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
101
    :param device: str, optional
102
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
103
104
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
105
106
107
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
108
        Rewrites all the request cache if set to `True`. `None` if not desired.
109
    :param delete_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
110
        Deletes all the request cache if set to `True`. `None` if not desired.
111
112
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
113
114
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
115
    :param bootstrap_iters:
116
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
117
118
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
119
    :param write_out: bool
120
121
122
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
123
124
    :param system_instruction: str
        System instruction to be applied to the prompt
125
126
127
128
129
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
130
131
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Baber Abbasi's avatar
Baber Abbasi committed
132
133
    :param gen_kwargs: dict or comma-separated string
        Arguments for model generation
134
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
135
    :param verbosity: str
Lintang Sutawika's avatar
Lintang Sutawika committed
136
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
137
138
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
139
140
141
142
143
144
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
145
146
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
147
148
149
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
    return
150
        Dictionary of results
151
    """
Baber Abbasi's avatar
Baber Abbasi committed
152
    if verbosity is not None:
Baber's avatar
Baber committed
153
        get_logger(verbosity)
154
    start_date = time.time()
155

156
157
158
159
160
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )

161
    _NEEDS_CHAT_TEMPLATE = ("inst", "chat")
162
    if (
163
164
165
166
        (
            isinstance(model_args, str)
            and any(kw in model_args.lower() for kw in _NEEDS_CHAT_TEMPLATE)
        )
167
168
        or (
            isinstance(model_args, dict)
169
170
171
172
            and any(
                any(kw in str(v).lower() for kw in _NEEDS_CHAT_TEMPLATE)
                for v in model_args.values()
            )
173
174
        )
    ) and not apply_chat_template:
Baber Abbasi's avatar
Baber Abbasi committed
175
        eval_logger.warning(
176
177
178
179
180
            wrap_text(
                f"""pretrained={model_args.get("pretrained") if isinstance(model_args, dict) else model_args} appears to be an
                instruct or chat variant but chat template is not applied.
                Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`).""",
            )
Baber Abbasi's avatar
Baber Abbasi committed
181
182
        )

183
184
185
186
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

187
    seed_message = []
188
189
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
190
        seed_message.append(f"Setting random seed to {random_seed}")
191
192
193
        random.seed(random_seed)

    if numpy_random_seed is not None:
194
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
195
196
197
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
198
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
199
200
        torch.manual_seed(torch_random_seed)

201
202
203
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

204
205
206
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

207
208
    if tasks is None:
        tasks = []
209
210
211
212
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
213

lintangsutawika's avatar
lintangsutawika committed
214
    if gen_kwargs is not None:
Baber Abbasi's avatar
Baber Abbasi committed
215
216
        if isinstance(gen_kwargs, str):
            gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
217
        eval_logger.warning(
Baber Abbasi's avatar
Baber Abbasi committed
218
            f"generation_kwargs: {gen_kwargs} specified through cli, these settings will update set parameters in yaml tasks. "
219
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
220
        )
Baber Abbasi's avatar
Baber Abbasi committed
221
        if not gen_kwargs:
lintangsutawika's avatar
lintangsutawika committed
222
223
            gen_kwargs = None

224
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
225
        if model_args is None:
226
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
227
            model_args = ""
228

229
        if isinstance(model_args, dict):
230
231
232
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
233
234
235
236
237
238
239
240
241
242
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
243
            eval_logger.info(
244
245
246
                wrap_text(
                    f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
                )
247
            )
248
249
250
251
252
253
254
255
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
256
    else:
257
        if not isinstance(model, lm_eval.api.model.LM):
258
259
260
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
261
        eval_logger.info("Using pre-initialized model")
262
        lm = model
263

haileyschoelkopf's avatar
haileyschoelkopf committed
264
    if use_cache is not None:
265
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
266
267
268
269
270
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
271
272
273
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
274
275
        )

276
    if task_manager is None:
Baber Abbasi's avatar
Baber Abbasi committed
277
278
279
280
281
282
283
284
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
            if isinstance(model_args, dict)
            else {}
        ) | (metadata or {})
        task_manager = TaskManager(metadata=metadata)
285

Baber Abbasi's avatar
Baber Abbasi committed
286
287
288
289
    task_dict = get_task_dict(
        tasks,
        task_manager,
    )
Baber Abbasi's avatar
Baber Abbasi committed
290

Lintang Sutawika's avatar
Lintang Sutawika committed
291
292
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
Baber's avatar
Baber committed
293
    def _adjust_config(task_dict: dict[str, "Task"]) -> dict[str, "Task"]:
Lintang Sutawika's avatar
Lintang Sutawika committed
294
295
296
297
298
299
300
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
301

302
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
303
304
305
306
307
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )
Baber Abbasi's avatar
Baber Abbasi committed
308
309
310
                    eval_logger.info(
                        f"{task_obj.config.task}: Using gen_kwargs: {task_obj.config.generation_kwargs}"
                    )
Lintang Sutawika's avatar
Lintang Sutawika committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
345

Stephen Hogg's avatar
Stephen Hogg committed
346
    if check_integrity:
347
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
348

KonradSzafer's avatar
KonradSzafer committed
349
350
351
352
353
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
354
355
356
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
357
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
358
359
        )

360
361
362
363
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
364
        samples=samples,
365
366
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
367
        bootstrap_iters=bootstrap_iters,
368
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
369
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
370
371
372
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
373
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
374
        confirm_run_unsafe_code=confirm_run_unsafe_code,
375
    )
376

377
    if lm.rank == 0:
378
379
380
381
382
383
384
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

385
386
        # add info about the model and few shot config
        results["config"] = {
387
            "model": model_name,
388
389
            "model_args": model_args,
        }
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
405
406
407
408
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
409
410
            }
        )
411
        results["git_hash"] = get_git_commit_hash()
412
        results["date"] = start_date
413
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
414
        add_tokenizer_info(results, lm)  # additional info about tokenizer
415
416
417
        return results
    else:
        return None
418

Leo Gao's avatar
Leo Gao committed
419

420
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
421
def evaluate(
422
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
423
    task_dict,
Baber's avatar
Baber committed
424
    limit: int | float | None = None,
425
    samples: Optional[dict] = None,
426
427
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
428
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
429
430
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
431
    system_instruction: Optional[str] = None,
432
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
433
    fewshot_as_multiturn: bool = False,
434
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
435
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
436
):
437
438
439
440
441
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
442
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
443
444
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
445
446
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
Hojin Lee's avatar
Hojin Lee committed
447
448
449
450
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
451
    :param bootstrap_iters:
452
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
453
    :param write_out: bool
454
455
456
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
457
458
    :param system_instruction: str
        System instruction to be applied to the prompt
459
460
461
462
463
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
464
465
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
466
467
468
469
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
470
471
472
    :return
        Dictionary of results
    """
473

474
475
476
477
478
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )
    if samples is not None:
Baber's avatar
Baber committed
479
480
481
        eval_logger.info(
            f"Evaluating examples for tasks {[x for x in list(samples.keys()) if x in task_dict.keys()]}"
        )
482
483
484
485
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )
486
    # tracks all Instances/requests a model must generate output on.
487
    requests = defaultdict(list)
488
489
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
490
    padding_requests = defaultdict(int)
491

492
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
493
    eval_tasks = get_task_list(task_dict)
494
    if not log_samples:
495
        if not all(
496
497
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
498
499
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
500

Hojin Lee's avatar
Hojin Lee committed
501
502
503
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
504
    incompatible_tasks = []
505
506
    for task_output in eval_tasks:
        task: Task = task_output.task
507

508
        if getattr(task, "MULTIMODAL", False) and not getattr(lm, "MULTIMODAL", False):
509
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
510
511
512
513
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
514
515
516
517
518
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
Hojin Lee's avatar
Hojin Lee committed
519
    # end validation check
520

Chenjie Luo's avatar
Chenjie Luo committed
521
522
523
    # Cache the limit arg.
    limit_arg = limit
    limits = []
524
525
526
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
527
528
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
529
530
        task.build_all_requests(
            limit=limit,
531
532
533
            samples=samples.get(task_output.task_name, None)
            if samples is not None
            else samples,
534
535
536
537
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
538
            system_instruction=system_instruction,
539
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
540
            fewshot_as_multiturn=fewshot_as_multiturn,
541
542
543
544
545
546
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
547
        )
548
        eval_logger.debug(
549
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
550
551
        )
        if write_out:
552
            print_writeout(task)
553
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
554
555
556
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
557
558

        if lm.world_size > 1:
559
560
561
562
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
563
564
565
566
567
568
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
569
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
570
            numpad = max(gathered_item) - gathered_item[lm.rank]
571
572
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
573

574
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
575
576
    # execute each type of request
    for reqtype, reqs in requests.items():
577
        eval_logger.info(f"Running {reqtype} requests")
578
579
580
581
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
582

583
584
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
585
586
                cloned_reqs.extend([req] * req.repeats)

587
588
589
590
591
592
593
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

594
595
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
596

597
598
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
599
600
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
601
    for task_output, limit in zip(eval_tasks, limits):
602
        task = task_output.task
603
604
        task.apply_filters()

605
606
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
607
        # TODO: make it possible to use a different metric per filter
608
        # Pre-process task.instances to group by doc_id
609
        instances_by_doc_id = defaultdict(list)
610
611
612
613
614
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
615
        # iterate over different filters used
616
        for filter_key in task.instances[0].filtered_resps.keys():
617
618
619
620
621
            indices = (
                samples.get(task_output.task_name, None)
                if samples is not None
                else None
            )
622
            doc_iterator = task.doc_iterator(
623
624
625
626
                rank=RANK,
                limit=limit,
                world_size=WORLD_SIZE,
                samples=indices,
627
            )
628
            for doc_id, doc in doc_iterator:
629
630
631
632
                if indices:
                    doc_id_true = indices[doc_id]
                else:
                    doc_id_true = doc_id
633
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
634
                metrics = task.process_results(
635
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
636
                )
637
638
639
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
640
                        "doc_id": doc_id_true,
641
642
643
644
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
645
646
647
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
648
649
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
650
651
652
653
654
655
656
657
658
659
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
660
661
                    }
                    example.update(metrics)
662
                    task_output.logged_samples.append(example)
663
                for metric, value in metrics.items():
664
                    task_output.sample_metrics[(metric, filter_key)].append(value)
665

666
667
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
668
        # first gather logged samples across all ranks
669
670
671
672
673
674
675
676
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
677
                )
678

679
680
681
682
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
683

684
685
686
687
688
689
690
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
691
                )
692
693
694
695
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
696

697
    if RANK == 0:
698
699
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
700
701
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
702
703
704
705
706
707
708
709
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
710

711
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
712
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
728
729
730
731
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
732

Lintang Sutawika's avatar
Lintang Sutawika committed
733
734
735
736
737
738
739
740
741
742
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
743

744
        results_dict = {
745
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
746
747
748
749
750
751
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
752
753
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
754
            "n-shot": dict(sorted(num_fewshot.items())),
755
            "higher_is_better": dict(sorted(higher_is_better.items())),
756
757
758
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
759
760
761
762
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
763
                }
Chenjie Luo's avatar
Chenjie Luo committed
764
                for task_output, limit in zip(eval_tasks, limits)
765
            },
766
        }
767
        if log_samples:
768
769
770
771
            # default: hash images
            samples = (
                hash_dict_images(samples)
                if os.environ.get("LMEVAL_HASHMM", "1") != "0"
Baber Abbasi's avatar
Baber Abbasi committed
772
                and (hasattr(lm, "MULTIMODAL"))
773
774
                else samples
            )
775
776
777
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
778

779
780
    else:
        return None