evaluator.py 31.4 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

Baber Abbasi's avatar
Baber Abbasi committed
3
import itertools
4
import json
5
import logging
6
import os
Baber Abbasi's avatar
Baber Abbasi committed
7
import random
8
import time
9
from collections import defaultdict
Baber's avatar
Baber committed
10
from typing import TYPE_CHECKING, Any, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
11

12
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
13
import torch
lintangsutawika's avatar
lintangsutawika committed
14

lintangsutawika's avatar
lintangsutawika committed
15
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
16
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
17
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
18
import lm_eval.models
19
from lm_eval.caching.cache import delete_cache
20
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    consolidate_group_results,
22
23
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
24
    get_subtask_list,
25
26
27
28
29
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
30
from lm_eval.loggers import EvaluationTracker
31
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
Baber's avatar
fix  
Baber committed
32
from lm_eval.tasks import TaskManager
33
from lm_eval.utils import (
Baber's avatar
Baber committed
34
    get_logger,
35
    handle_non_serializable,
36
    hash_dict_images,
37
38
39
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
40
    wrap_text,
41
)
42

Fabrizio Milo's avatar
Fabrizio Milo committed
43

44
45
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
46
    from lm_eval.api.task import Task
47

Lintang Sutawika's avatar
Lintang Sutawika committed
48
49
eval_logger = logging.getLogger(__name__)

50

51
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
52
53
def simple_evaluate(
    model,
Baber's avatar
Baber committed
54
    model_args: Optional[Union[str, dict[str, Any]]] = None,
55
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
56
    num_fewshot: Optional[int] = None,
57
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
58
59
60
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
61
62
63
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
64
    limit: Optional[Union[int, float]] = None,
65
    samples: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
66
67
68
69
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
70
71
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
72
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
73
    fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
74
    gen_kwargs: Union[str, dict, None] = None,
75
    task_manager: Optional[TaskManager] = None,
Baber Abbasi's avatar
Baber Abbasi committed
76
    verbosity=None,
Baber Abbasi's avatar
Baber Abbasi committed
77
    predict_only: bool = False,
78
79
80
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
81
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
82
    confirm_run_unsafe_code: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
83
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
84
):
85
    """Instantiate and evaluate a model on a list of tasks.
86

87
88
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
89
90
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
91
        Ignored if `model` argument is a LM object.
92
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
93
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
94
95
    :param num_fewshot: int
        Number of examples in few-shot context
96
    :param batch_size: int or str, optional
97
        Batch size for model
98
99
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
100
    :param device: str, optional
101
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
102
103
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
104
105
106
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
107
        Rewrites all the request cache if set to `True`. `None` if not desired.
108
    :param delete_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
109
        Deletes all the request cache if set to `True`. `None` if not desired.
110
111
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
112
113
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
114
    :param bootstrap_iters:
115
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
116
117
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
118
    :param write_out: bool
119
120
121
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
122
123
    :param system_instruction: str
        System instruction to be applied to the prompt
124
125
126
127
128
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
129
130
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Baber Abbasi's avatar
Baber Abbasi committed
131
132
    :param gen_kwargs: dict or comma-separated string
        Arguments for model generation
133
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
134
    :param verbosity: str
Lintang Sutawika's avatar
Lintang Sutawika committed
135
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
136
137
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
138
139
140
141
142
143
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
144
145
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
146
147
148
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
    return
149
        Dictionary of results
150
    """
Baber Abbasi's avatar
Baber Abbasi committed
151
    if verbosity is not None:
Baber's avatar
Baber committed
152
        get_logger(verbosity)
153
    start_date = time.time()
154

155
156
157
158
159
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )

160
    _NEEDS_CHAT_TEMPLATE = ("inst", "chat")
161
    if (
162
163
164
165
        (
            isinstance(model_args, str)
            and any(kw in model_args.lower() for kw in _NEEDS_CHAT_TEMPLATE)
        )
166
167
        or (
            isinstance(model_args, dict)
168
169
170
171
            and any(
                any(kw in str(v).lower() for kw in _NEEDS_CHAT_TEMPLATE)
                for v in model_args.values()
            )
172
173
        )
    ) and not apply_chat_template:
Baber Abbasi's avatar
Baber Abbasi committed
174
        eval_logger.warning(
175
176
177
178
179
            wrap_text(
                f"""pretrained={model_args.get("pretrained") if isinstance(model_args, dict) else model_args} appears to be an
                instruct or chat variant but chat template is not applied.
                Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`).""",
            )
Baber Abbasi's avatar
Baber Abbasi committed
180
181
        )

182
183
184
185
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

186
    seed_message = []
187
188
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
189
        seed_message.append(f"Setting random seed to {random_seed}")
190
191
192
        random.seed(random_seed)

    if numpy_random_seed is not None:
193
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
194
195
196
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
197
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
198
199
        torch.manual_seed(torch_random_seed)

200
201
202
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

203
204
205
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

206
207
    if tasks is None:
        tasks = []
208
209
210
211
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
212

lintangsutawika's avatar
lintangsutawika committed
213
    if gen_kwargs is not None:
Baber Abbasi's avatar
Baber Abbasi committed
214
215
        if isinstance(gen_kwargs, str):
            gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
216
        eval_logger.warning(
Baber Abbasi's avatar
Baber Abbasi committed
217
            f"generation_kwargs: {gen_kwargs} specified through cli, these settings will update set parameters in yaml tasks. "
218
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
219
        )
Baber Abbasi's avatar
Baber Abbasi committed
220
        if not gen_kwargs:
lintangsutawika's avatar
lintangsutawika committed
221
222
            gen_kwargs = None

223
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
224
        if model_args is None:
225
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
226
            model_args = ""
227

228
        if isinstance(model_args, dict):
229
230
231
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
232
233
234
235
236
237
238
239
240
241
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
242
            eval_logger.info(
243
244
245
                wrap_text(
                    f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
                )
246
            )
247
248
249
250
251
252
253
254
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
255
    else:
256
        if not isinstance(model, lm_eval.api.model.LM):
257
258
259
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
260
        eval_logger.info("Using pre-initialized model")
261
        lm = model
262

haileyschoelkopf's avatar
haileyschoelkopf committed
263
    if use_cache is not None:
264
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
265
266
267
268
269
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
270
271
272
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
273
274
        )

275
    if task_manager is None:
Baber Abbasi's avatar
Baber Abbasi committed
276
277
278
279
280
281
282
283
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
            if isinstance(model_args, dict)
            else {}
        ) | (metadata or {})
        task_manager = TaskManager(metadata=metadata)
284

Baber Abbasi's avatar
Baber Abbasi committed
285
286
287
288
    task_dict = get_task_dict(
        tasks,
        task_manager,
    )
Baber Abbasi's avatar
Baber Abbasi committed
289

Lintang Sutawika's avatar
Lintang Sutawika committed
290
291
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
Baber's avatar
Baber committed
292
    def _adjust_config(task_dict: dict[str, "Task"]) -> dict[str, "Task"]:
Lintang Sutawika's avatar
Lintang Sutawika committed
293
294
295
296
297
298
299
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
300

301
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
302
303
304
305
306
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )
Baber Abbasi's avatar
Baber Abbasi committed
307
308
309
                    eval_logger.info(
                        f"{task_obj.config.task}: Using gen_kwargs: {task_obj.config.generation_kwargs}"
                    )
Lintang Sutawika's avatar
Lintang Sutawika committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
344

Stephen Hogg's avatar
Stephen Hogg committed
345
    if check_integrity:
346
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
347

KonradSzafer's avatar
KonradSzafer committed
348
349
350
351
352
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
353
354
355
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
356
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
357
358
        )

359
360
361
362
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
363
        samples=samples,
364
365
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
366
        bootstrap_iters=bootstrap_iters,
367
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
368
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
369
370
371
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
372
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
373
        confirm_run_unsafe_code=confirm_run_unsafe_code,
374
    )
375

376
    if lm.rank == 0:
377
378
379
380
381
382
383
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

384
385
        # add info about the model and few shot config
        results["config"] = {
386
            "model": model_name,
387
388
            "model_args": model_args,
        }
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
404
405
406
407
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
408
409
            }
        )
410
        results["git_hash"] = get_git_commit_hash()
411
        results["date"] = start_date
412
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
413
        add_tokenizer_info(results, lm)  # additional info about tokenizer
414
415
416
        return results
    else:
        return None
417

Leo Gao's avatar
Leo Gao committed
418

419
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
420
def evaluate(
421
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
422
    task_dict,
Baber's avatar
Baber committed
423
    limit: int | float | None = None,
424
    samples: Optional[dict] = None,
425
426
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
427
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
428
429
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
430
    system_instruction: Optional[str] = None,
431
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
432
    fewshot_as_multiturn: bool = False,
433
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
434
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
435
):
436
437
438
439
440
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
441
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
442
443
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
444
445
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
Hojin Lee's avatar
Hojin Lee committed
446
447
448
449
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
450
    :param bootstrap_iters:
451
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
452
    :param write_out: bool
453
454
455
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
456
457
    :param system_instruction: str
        System instruction to be applied to the prompt
458
459
460
461
462
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
463
464
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
465
466
467
468
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
469
470
471
    :return
        Dictionary of results
    """
472

473
474
475
476
477
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )
    if samples is not None:
Baber's avatar
Baber committed
478
479
480
        eval_logger.info(
            f"Evaluating examples for tasks {[x for x in list(samples.keys()) if x in task_dict.keys()]}"
        )
481
482
483
484
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )
485
    # tracks all Instances/requests a model must generate output on.
486
    requests = defaultdict(list)
487
488
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
489
    padding_requests = defaultdict(int)
490

491
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
492
    eval_tasks = get_task_list(task_dict)
493
    if not log_samples:
494
        if not all(
495
496
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
497
498
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
499

Hojin Lee's avatar
Hojin Lee committed
500
501
502
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
503
    incompatible_tasks = []
504
505
    for task_output in eval_tasks:
        task: Task = task_output.task
506

507
        if getattr(task, "MULTIMODAL", False) and not getattr(lm, "MULTIMODAL", False):
508
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
509
510
511
512
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
513
514
515
516
517
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
Hojin Lee's avatar
Hojin Lee committed
518
    # end validation check
519

Chenjie Luo's avatar
Chenjie Luo committed
520
521
522
    # Cache the limit arg.
    limit_arg = limit
    limits = []
523
524
525
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
526
527
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
528
529
        task.build_all_requests(
            limit=limit,
530
531
532
            samples=samples.get(task_output.task_name, None)
            if samples is not None
            else samples,
533
534
535
536
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
537
            system_instruction=system_instruction,
538
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
539
            fewshot_as_multiturn=fewshot_as_multiturn,
540
541
542
543
544
545
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
546
        )
547
        eval_logger.debug(
548
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
549
550
        )
        if write_out:
551
            print_writeout(task)
552
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
553
554
555
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
556
557

        if lm.world_size > 1:
558
559
560
561
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
562
563
564
565
566
567
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
568
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
569
            numpad = max(gathered_item) - gathered_item[lm.rank]
570
571
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
572

573
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
574
575
    # execute each type of request
    for reqtype, reqs in requests.items():
576
        eval_logger.info(f"Running {reqtype} requests")
577
578
579
580
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
581

582
583
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
584
585
                cloned_reqs.extend([req] * req.repeats)

586
587
588
589
590
591
592
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

593
594
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
595

596
597
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
598
599
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
600
    for task_output, limit in zip(eval_tasks, limits):
601
        task = task_output.task
602
603
        task.apply_filters()

604
605
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
606
        # TODO: make it possible to use a different metric per filter
607
        # Pre-process task.instances to group by doc_id
608
        instances_by_doc_id = defaultdict(list)
609
610
611
612
613
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
614
        # iterate over different filters used
615
        for filter_key in task.instances[0].filtered_resps.keys():
616
617
618
619
620
            indices = (
                samples.get(task_output.task_name, None)
                if samples is not None
                else None
            )
621
            doc_iterator = task.doc_iterator(
622
623
624
625
                rank=RANK,
                limit=limit,
                world_size=WORLD_SIZE,
                samples=indices,
626
            )
627
            for doc_id, doc in doc_iterator:
628
629
630
631
                if indices:
                    doc_id_true = indices[doc_id]
                else:
                    doc_id_true = doc_id
632
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
633
                metrics = task.process_results(
634
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
635
                )
636
637
638
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
639
                        "doc_id": doc_id_true,
640
641
642
643
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
644
645
646
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
647
648
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
649
650
651
652
653
654
655
656
657
658
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
659
660
                    }
                    example.update(metrics)
661
                    task_output.logged_samples.append(example)
662
                for metric, value in metrics.items():
663
                    task_output.sample_metrics[(metric, filter_key)].append(value)
664

665
666
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
667
        # first gather logged samples across all ranks
668
669
670
671
672
673
674
675
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
676
                )
677

678
679
680
681
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
682

683
684
685
686
687
688
689
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
690
                )
691
692
693
694
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
695

696
    if RANK == 0:
697
698
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
699
700
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
701
702
703
704
705
706
707
708
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
709

710
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
711
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
727
728
729
730
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
731

Lintang Sutawika's avatar
Lintang Sutawika committed
732
733
734
735
736
737
738
739
740
741
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
742

743
        results_dict = {
744
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
745
746
747
748
749
750
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
751
752
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
753
            "n-shot": dict(sorted(num_fewshot.items())),
754
            "higher_is_better": dict(sorted(higher_is_better.items())),
755
756
757
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
758
759
760
761
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
762
                }
Chenjie Luo's avatar
Chenjie Luo committed
763
                for task_output, limit in zip(eval_tasks, limits)
764
            },
765
        }
766
        if log_samples:
767
768
769
770
            # default: hash images
            samples = (
                hash_dict_images(samples)
                if os.environ.get("LMEVAL_HASHMM", "1") != "0"
Baber Abbasi's avatar
Baber Abbasi committed
771
                and (hasattr(lm, "MULTIMODAL"))
772
773
                else samples
            )
774
775
776
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
777

778
779
    else:
        return None