"...docs/community_created_documentation.md" did not exist on "0a21fff9619a39d3b8105c065edb061f1f3b305d"
utils.py 20.4 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

baberabb's avatar
baberabb committed
13
from typing import Iterator, List, Literal, Union, Any, Callable
14

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
18
import numpy as np
sdtblck's avatar
sdtblck committed
19

20
from jinja2 import BaseLoader, Environment, StrictUndefined
21
from itertools import islice
sdtblck's avatar
sdtblck committed
22

23
import logging
lintangsutawika's avatar
lintangsutawika committed
24

25
26
27
28
29
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
30
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
31

32
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
33
34


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
58
59
60
61
62
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
63
64
65
66
67
68
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
69
70


Jason Phang's avatar
gpt3  
Jason Phang committed
71
72
73
74
75
76
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
77
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
78
79
    if not args_string:
        return {}
80
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
81
82
83
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
84
    return args_dict
Leo Gao's avatar
Leo Gao committed
85

Fabrizio Milo's avatar
Fabrizio Milo committed
86

Leo Gao's avatar
Leo Gao committed
87
88
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
89
        yield from iter
Leo Gao's avatar
Leo Gao committed
90
91


Ethan Smith's avatar
Ethan Smith committed
92
def chunks(iter, n: int = 0, fn=None):
baberabb's avatar
baberabb committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    """
    Divides an iterable into chunks of specified size or based on a given function.
    Useful for batching

    Parameters:
    - iter: The input iterable to be divided into chunks.
    - n: An integer representing the size of each chunk. Default is 0.
    - fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.

    Returns:
    An iterator that yields chunks of the input iterable.

    Example usage:
    ```
    data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    for chunk in chunks(data, 3):
        print(chunk)
    ```
    Output:
    ```
    [1, 2, 3]
    [4, 5, 6]
    [7, 8, 9]
    [10]
    ```
    """
Leo Gao's avatar
Leo Gao committed
119
    arr = []
120
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
121
        arr.append(x)
122
        if len(arr) == (fn(i, iter) if fn else n):
Leo Gao's avatar
Leo Gao committed
123
124
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
125
126
127
128

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
129

130
131
132
133
134
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
135

136
137
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
138

gakada's avatar
gakada committed
139
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
140
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
141
142
143
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
144
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
145
        for value in values.split(","):
146
147
148
149
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
150
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
151
152
        return True

Ethan Smith's avatar
Ethan Smith committed
153
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
154
155
156
157
158
159
160
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
161
162
163
    if type(patterns) == str:
        patterns = [patterns]

gakada's avatar
gakada committed
164
165
166
167
168
169
170
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


171
172
173
174
175
176
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Leo Gao's avatar
Leo Gao committed
177
178
179
180
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
181
182
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
183
    string = re.sub(r" (['.,])", r"\1", string)
184
185
186
    return string


Jason Phang's avatar
Jason Phang committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
214
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
215
216
217
218
219
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
220

Jason Phang's avatar
Jason Phang committed
221
        yield (
lintangsutawika's avatar
lintangsutawika committed
222
223
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
224
225
226
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
227

Leo Gao's avatar
Leo Gao committed
228
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
229
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
230
    a, b = pair
231
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
232

Jason Phang's avatar
Jason Phang committed
233

234
class Reorderer:
baberabb's avatar
baberabb committed
235
236
237
238
239
240
241
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
242
243
244
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
245
246
247
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
248
249
250
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
251

252
    def get_reordered(self):
baberabb's avatar
baberabb committed
253
254
255
256
257
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
258
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
259

260
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
261
262
263
264
265
266
267
268
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
269
270
271
272
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
273
            for ind in inds:
274
275
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
276

277
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
278

279
280
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
281

haileyschoelkopf's avatar
haileyschoelkopf committed
282
283
284
285
286
287
288
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
289
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
340
def make_table(result_dict, column: str = "results"):
341
342
343
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

lintangsutawika's avatar
lintangsutawika committed
344
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
345
346
347
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
348

lintangsutawika's avatar
lintangsutawika committed
349
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
350
        column_name,
lintangsutawika's avatar
lintangsutawika committed
351
352
        "Version",
        "Filter",
353
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
354
355
356
357
358
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
359

lintangsutawika's avatar
lintangsutawika committed
360
361
362
363
364
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

365
366
    values = []

lintangsutawika's avatar
lintangsutawika committed
367
    for k, dic in result_dict[column].items():
368
        version = result_dict["versions"][k]
369
        n = str(result_dict["n-shot"][k])
370
371
372
373

        if "alias" in dic:
            k = dic.pop("alias")

374
375
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
376
377
378
            if m.endswith("_stderr"):
                continue

379
380
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
381
                values.append([k, version, f, n, m, "%.4f" % v, "±", "%.4f" % se])
382
            else:
383
                values.append([k, version, f, n, m, "%.4f" % v, "", ""])
384
385
386
387
388
389
390
391
392
393
394
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


395
396
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
397
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
398
399
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
400

401
402
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
403
404
405
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
406
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
407
408
                "lm-evaluation-harness!"
            )
409
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
410

411
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
412

Fabrizio Milo's avatar
Fabrizio Milo committed
413

Stephen Hogg's avatar
Stephen Hogg committed
414
415
416
417
418
419
420
421
422
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
423
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
424
425
426
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
427
428
429
430
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
431
432

@positional_deprecated
433
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
434
435
436
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
437
438
    import pytest

439
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
440
441
442
443
444
445
446
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
447
448
449
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
450
451
452
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
453
454


455
456
457
458
459
460
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
461
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
462
        git_hash = git_hash.decode()
463
464
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
465
466
467
468
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
469
470
471
472
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
473
474
475
476
    *module_name, function_name = function_name.split(".")
    if type(module_name) == list:
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
477
478
479
480
481
482
483
484

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
485

lintangsutawika's avatar
lintangsutawika committed
486
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
487
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
488
489


490
491
492
493
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
494

lintangsutawika's avatar
lintangsutawika committed
495
496
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

        if type(include_path) == str:
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
527
528


Ethan Smith's avatar
Ethan Smith committed
529
def regex_replace(string, pattern, repl, count: int = 0):
530
531
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
532

lintangsutawika's avatar
lintangsutawika committed
533

534
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
535
env.filters["regex_replace"] = regex_replace
536
537


baberabb's avatar
baberabb committed
538
def apply_template(template: str, doc: dict) -> str:
539
540
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
541
542


543
544
545
546
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
547
548
549
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
550
551


haileyschoelkopf's avatar
haileyschoelkopf committed
552
553
554
555
556
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
557
558
559
560
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
561
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
562
563
564
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
565

lintangsutawika's avatar
lintangsutawika committed
566
    for i, tensor in enumerate(tensors):
567
568
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
569
570
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
571
572
573
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
574
575
576
577
578
579
580
581
582
583
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
584
585
586
587
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
588
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
589
                            max_length - tensor_len,
590
591
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
592
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
593
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
594
595
596
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
597
598
599
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
600
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
601
602


Ethan Smith's avatar
Ethan Smith committed
603
def clear_torch_cache() -> None:
604
605
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
606
607


lintangsutawika's avatar
lintangsutawika committed
608
609
610
611
612
613
614
615
616
617
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
618
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
619
620
621
622
623
624
625
626
627
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
628
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
629
630
631
632
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
633
634
635
636
637
638
639
640
        # we look back for 2 more tokens than it takes to encode our stop sequence
        # because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']`
        # and we don't want to mistakenly not stop a generation because our
        # (string) stop sequence was output in a different tokenization

        # NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model,
        # and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized
        self.sequence_id_len = len(self.sequence_ids) + 2
haileyschoelkopf's avatar
haileyschoelkopf committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)
        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )