utils.py 20.1 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
11
from dataclasses import asdict, is_dataclass
12
from itertools import islice
13
from pathlib import Path
Baber's avatar
Baber committed
14
from typing import Any, Callable, Generator, List, Optional, Tuple
15

Lintang Sutawika's avatar
Lintang Sutawika committed
16
import numpy as np
17
import yaml
18
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
19

lintangsutawika's avatar
lintangsutawika committed
20

21
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
22

23
24
25
26
27
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
28

Baber's avatar
Baber committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def get_logger(level: Optional[str] = None) -> logging.Logger:
    """
    Get a logger with a stream handler that captures all lm_eval logs.

    Args:
        level (Optional[str]): The logging level.
    Example:
        >>> logger = get_logger("INFO")
        >>> logger.info("Log this")
        INFO:lm_eval:Log this!

    Returns:
        logging.Logger: The logger.
    """
    logger = logging.getLogger("lm_eval")
    if not logger.hasHandlers():
        logger.addHandler(logging.StreamHandler())
        logger.setLevel(logging.INFO)
    if level is not None:
        level = getattr(logging, level.upper())
        logger.setLevel(level)
    return logger


def setup_logging(verbosity=logging.INFO, suppress_third_party=True):
    """
    Configure logging for the lm_eval CLI application.

    WARNING: This function is intended for CLI use only. Library users should
    use get_logger() instead to avoid interfering with their application's
    logging configuration.

    Args:
        verbosity: Log level (int) or string name. Can be overridden by LOGLEVEL env var.
        suppress_third_party: Whether to suppress verbose third-party library logs.

    Returns:
        logging.Logger: The configured lm_eval logger instance.
    """
    # Validate verbosity parameter
    if isinstance(verbosity, str):
        level_map = {
            "DEBUG": logging.DEBUG,
            "INFO": logging.INFO,
            "WARNING": logging.WARNING,
            "ERROR": logging.ERROR,
            "CRITICAL": logging.CRITICAL,
        }
        verbosity = level_map.get(verbosity.upper(), logging.INFO)
    elif not isinstance(verbosity, int):
        verbosity = logging.INFO

    # Get log level from environment or use default
    if log_level_env := os.environ.get("LOGLEVEL", None):
        level_map = {
            "DEBUG": logging.DEBUG,
            "INFO": logging.INFO,
            "WARNING": logging.WARNING,
            "ERROR": logging.ERROR,
            "CRITICAL": logging.CRITICAL,
        }
        log_level = level_map.get(log_level_env.upper(), verbosity)
    else:
        log_level = verbosity

    # Get the lm_eval logger directly
    logger = logging.getLogger("lm_eval")

    # Configure custom formatter
Baber Abbasi's avatar
Baber Abbasi committed
98
99
100
101
102
103
104
105
106
107
108
    class CustomFormatter(logging.Formatter):
        def format(self, record):
            if record.name.startswith("lm_eval."):
                record.name = record.name[len("lm_eval.") :]
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Baber's avatar
Baber committed
109
110
111
112
113
    # Check if handler already exists to prevent duplicates
    has_stream_handler = any(
        isinstance(h, logging.StreamHandler) for h in logger.handlers
    )
    if not has_stream_handler:
Baber Abbasi's avatar
Baber Abbasi committed
114
115
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)
Baber's avatar
Baber committed
116
117
118
        logger.addHandler(handler)
        # For CLI use, we disable propagation to avoid duplicate messages
        logger.propagate = False
Baber Abbasi's avatar
Baber Abbasi committed
119

Baber's avatar
Baber committed
120
121
    # Set the logger level
    logger.setLevel(log_level)
Baber Abbasi's avatar
Baber Abbasi committed
122

Baber's avatar
Baber committed
123
124
125
126
127
128
129
    # Optionally suppress verbose third-party library logs
    if suppress_third_party and log_level == logging.DEBUG:
        third_party_loggers = ["urllib3", "filelock", "fsspec"]
        for logger_name in third_party_loggers:
            logging.getLogger(logger_name).setLevel(logging.INFO)

    return logger
Lintang Sutawika's avatar
Lintang Sutawika committed
130
131


132
133
134
135
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


136
137
138
139
140
141
142
143
144
145
146
147
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
148
149
150
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
151
152
153
154
155
156
157
158

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
159
160
161
162
163
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
164
165
166
167
168
169
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
170
171


172
173
174
175
176
177
178
179
180
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


181
182
183
184
185
186
187
188
189
190
191
192
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber Abbasi's avatar
Baber Abbasi committed
193
def simple_parse_args_string(args_string: Optional[str]) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
194
195
196
197
198
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
199
200
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
201
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
202
203
    if not args_string:
        return {}
204
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
205
    args_dict = {
206
207
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
208
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
209
    return args_dict
Leo Gao's avatar
Leo Gao committed
210

Fabrizio Milo's avatar
Fabrizio Milo committed
211

Leo Gao's avatar
Leo Gao committed
212
213
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
214
        yield from iter
Leo Gao's avatar
Leo Gao committed
215
216


217
218
219
220
221
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
222

223
224
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
225

gakada's avatar
gakada committed
226
227
228
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
229
    if isinstance(patterns, str):
230
231
        patterns = [patterns]

gakada's avatar
gakada committed
232
233
234
235
236
237
238
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
239
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
240
241
242
243
244
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber Abbasi's avatar
Baber Abbasi committed
245
def general_detokenize(string) -> str:
Leo Gao's avatar
Leo Gao committed
246
247
248
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
249
250
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
251
    string = re.sub(r" (['.,])", r"\1", string)
252
253
254
    return string


255
256
257
258
259
260
261
262
263
264
265
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
266
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


def get_latest_filename(filenames: List[str]) -> str:
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


def get_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


def get_sample_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


304
305
306
def get_rolling_token_windows(
    token_list: List[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[Tuple[List[int], List[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
333
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
334
335
336
337
338
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
339

Jason Phang's avatar
Jason Phang committed
340
        yield (
lintangsutawika's avatar
lintangsutawika committed
341
342
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
343
344
345
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
346

347
348
349
def make_disjoint_window(
    pair: Tuple[List[int], List[int]],
) -> Tuple[List[int], List[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
350
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
351
    a, b = pair
352
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
353

Jason Phang's avatar
Jason Phang committed
354

355
356
357
358
359
360
361
362
363
364
365
366
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


367
class Reorderer:
baberabb's avatar
baberabb committed
368
369
370
371
372
373
374
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
375
376
377
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
378
379
380
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
381
382
383
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
384

385
    def get_reordered(self):
baberabb's avatar
baberabb committed
386
387
388
389
390
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
391
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
392

393
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
394
395
396
397
398
399
400
401
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
402
403
404
405
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
406
            for ind in inds:
407
408
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
409

410
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
411

412
413
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
414

Lintang Sutawika's avatar
Lintang Sutawika committed
415
def make_table(result_dict, column: str = "results", sort_results: bool = False):
416
    """Generate table of results."""
417
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
418

lintangsutawika's avatar
lintangsutawika committed
419
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
420
421
422
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
423

lintangsutawika's avatar
lintangsutawika committed
424
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
425
        column_name,
lintangsutawika's avatar
lintangsutawika committed
426
427
        "Version",
        "Filter",
428
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
429
        "Metric",
430
        "",
lintangsutawika's avatar
lintangsutawika committed
431
432
433
434
        "Value",
        "",
        "Stderr",
    ]
435

lintangsutawika's avatar
lintangsutawika committed
436
437
438
439
440
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

441
442
    values = []

443
444
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
445
446
447
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
448
449
450
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
451
452
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
453
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
454
455
456
457

        if "alias" in dic:
            k = dic.pop("alias")

458
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
459
        metric_items = sorted(metric_items)
460
461

        for (mf), v in metric_items:
462
            m, _, f = mf.partition(",")
463
464
465
            if m.endswith("_stderr"):
                continue

466
467
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

Lintang Sutawika's avatar
Lintang Sutawika committed
468
469
            v = "%.4f" % v if isinstance(v, float) else v

470
471
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Lintang Sutawika's avatar
Lintang Sutawika committed
472
                se = "   N/A" if se == "N/A" else "%.4f" % se
Lintang Sutawika's avatar
Lintang Sutawika committed
473
                values.append([k, version, f, n, m, hib, v, "±", se])
474
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
475
                values.append([k, version, f, n, m, hib, v, "", ""])
476
477
478
479
480
481
482
483
484
485
486
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


487
488
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
489
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
490
491
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
492

493
494
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
495
496
497
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
498
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
499
500
                "lm-evaluation-harness!"
            )
501
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
502

503
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
504

Fabrizio Milo's avatar
Fabrizio Milo committed
505

506
507
508
509
def ignore_constructor(loader, node):
    return node


510
def import_function(loader: yaml.Loader, node, yaml_path: Path):
lintangsutawika's avatar
lintangsutawika committed
511
512
    function_name = loader.construct_scalar(node)

lintangsutawika's avatar
lintangsutawika committed
513
    *module_name, function_name = function_name.split(".")
514
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
515
        module_name = ".".join(module_name)
516
    module_path = yaml_path.parent / f"{module_name}.py"
lintangsutawika's avatar
lintangsutawika committed
517

518
519
520
521
    spec = importlib.util.spec_from_file_location(module_name, module_path.as_posix())

    if spec is None:
        raise ImportError(f"Could not import module {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
522
    module = importlib.util.module_from_spec(spec)
523
524
525

    if spec.loader is None:
        raise ImportError(f"Module loader is None, {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
526
527
528
529
530
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
531

532
533
534
535
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
536
537
538
539
        if yaml_path is None:
            raise ValueError("yaml_path must be provided if mode is 'full'.")
        # Attach yaml_path to the import function so that it can be used later
        constructor_fn = functools.partial(import_function, yaml_path=Path(yaml_path))
lintangsutawika's avatar
lintangsutawika committed
540

541
    loader = yaml.CLoader if yaml.__with_libyaml__ else yaml.FullLoader
542
    # Add the import_function constructor to the YAML loader
543
    yaml.add_constructor("!function", constructor_fn, Loader=loader)
544
545
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
546
            yaml_config = yaml.load(file, Loader=loader)
lintangsutawika's avatar
lintangsutawika committed
547

lintangsutawika's avatar
lintangsutawika committed
548
549
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
550
551
552
553
554
555
556

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

557
        if isinstance(include_path, str):
558
559
560
561
562
563
564
565
566
567
568
569
570
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
571
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
572
573
574
575
576
577
578
579
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
580
581


Ethan Smith's avatar
Ethan Smith committed
582
def regex_replace(string, pattern, repl, count: int = 0):
583
584
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
585

lintangsutawika's avatar
lintangsutawika committed
586

587
588
589
env = Environment(
    loader=BaseLoader, undefined=StrictUndefined, keep_trailing_newline=True
)
590
env.filters["regex_replace"] = regex_replace
591
592


baberabb's avatar
baberabb committed
593
def apply_template(template: str, doc: dict) -> str:
594
595
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
596
597


598
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
599
600
601
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
602
603
604
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
605
606


artemorloff's avatar
artemorloff committed
607
# TODO: why func for metric calc is here in eval utils?
608
609
610
611
612
613
614
615
def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644


def convert_pil_to_hash(value):
    from io import BytesIO

    img_bytes = BytesIO()
    value.save(img_bytes, format="PNG")
    return hashlib.sha256(str(img_bytes).encode()).hexdigest()


def convert_bytes_to_hash(value):
    return hashlib.sha256(str(value).encode()).hexdigest()


def hash_dict_images(data_dict):
    """
    Create a deep copy of `data_dict` where all bytes and PIL.Image.Image values
    are replaced by their respective hashes using the provided converter functions.

    Parameters:
        data_dict (dict): The input dictionary with arbitrary nesting of dicts and lists.

    Returns:
        dict: A new dictionary with the same structure as `data_dict`, but with all
              bytes and PIL.Image.Image objects replaced by their hashes.
    """

    def _process_value(value):
        # Bytes -> hash
Baber Abbasi's avatar
Baber Abbasi committed
645
646
        from PIL import Image

647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        if isinstance(value, (bytes, bytearray)):
            return convert_bytes_to_hash(value)
        # PIL Image -> hash
        if isinstance(value, Image.Image):
            return convert_pil_to_hash(value)
        # Nested dictionary -> recurse
        if isinstance(value, dict):
            return {k: _process_value(v) for k, v in value.items()}
        # List or tuple -> recurse, preserving type
        if isinstance(value, list):
            return [_process_value(v) for v in value]
        if isinstance(value, tuple):
            return tuple(_process_value(v) for v in value)
        # Other types remain unchanged
        return value

    # Ensure the top-level is a dict
    if not isinstance(data_dict, dict):
        raise TypeError("Input must be a dictionary")

Baber Abbasi's avatar
Baber Abbasi committed
667
668
669
670
671
    return (
        {key: _process_value(val) for key, val in data_dict.items()}
        if importlib.util.find_spec("PIL")
        else data_dict
    )