utils.py 18.7 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

3
4
import collections
import fnmatch
5
import hashlib
6
import importlib.util
7
import inspect
8
import json
9
10
11
import logging
import os
import re
Baber's avatar
Baber committed
12
from collections.abc import Generator
13
from dataclasses import asdict, is_dataclass
Baber's avatar
Baber committed
14
from functools import lru_cache, partial, wraps
15
from itertools import islice
16
from pathlib import Path
Baber's avatar
Baber committed
17
from typing import Any, Callable
18

Lintang Sutawika's avatar
Lintang Sutawika committed
19
import numpy as np
20
import yaml
Baber's avatar
Baber committed
21
from jinja2 import BaseLoader, Environment, StrictUndefined, Template
sdtblck's avatar
sdtblck committed
22

lintangsutawika's avatar
lintangsutawika committed
23

24
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
25

26
27
28
29
30
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def wrap_text(string: str, width: int = 140, **kwargs) -> Optional[str]:
    """
    Wraps the given string to the specified width.
    """
    import textwrap

    return textwrap.fill(
        inspect.cleandoc(string),
        width=width,
        initial_indent="",
        subsequent_indent=" " * 8,
        break_long_words=False,
        break_on_hyphens=False,
        **kwargs,
    )


Lintang Sutawika's avatar
Lintang Sutawika committed
49
50
def setup_logging(verbosity=logging.INFO):
    # Configure the root logger
Baber Abbasi's avatar
Baber Abbasi committed
51
52
53
54
55
56
57
58
59
60
61
    class CustomFormatter(logging.Formatter):
        def format(self, record):
            if record.name.startswith("lm_eval."):
                record.name = record.name[len("lm_eval.") :]
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Lintang Sutawika's avatar
Lintang Sutawika committed
62
63
64
65
66
67
68
69
70
71
72
    log_level = os.environ.get("LOGLEVEL", verbosity) or verbosity

    level_map = {
        "DEBUG": logging.DEBUG,
        "INFO": logging.INFO,
        "WARNING": logging.WARNING,
        "ERROR": logging.ERROR,
        "CRITICAL": logging.CRITICAL,
    }

    log_level = level_map.get(str(log_level).upper(), logging.INFO)
Baber Abbasi's avatar
Baber Abbasi committed
73

Lintang Sutawika's avatar
Lintang Sutawika committed
74
    if not logging.root.handlers:
Baber Abbasi's avatar
Baber Abbasi committed
75
76
77
78
79
80
81
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)

        root_logger = logging.getLogger()
        root_logger.addHandler(handler)
        root_logger.setLevel(log_level)

Lintang Sutawika's avatar
Lintang Sutawika committed
82
83
84
85
86
87
88
89
        if log_level == logging.DEBUG:
            third_party_loggers = ["urllib3", "filelock", "fsspec"]
            for logger_name in third_party_loggers:
                logging.getLogger(logger_name).setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(log_level)


90
91
92
93
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


94
95
96
97
98
99
100
101
102
103
104
105
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
106
107
108
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
109
110
111
112
113

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

Baber's avatar
Baber committed
114
    return re.split(r"(?<!\\)" + sep_char, text, maxsplit=maxsplit)
115
116


haileyschoelkopf's avatar
haileyschoelkopf committed
117
118
119
120
121
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
122
123
124
125
126
127
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
128
129


130
def handle_non_serializable(o):
Baber's avatar
Baber committed
131
    if isinstance(o, np.integer):
132
133
134
135
136
137
138
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


139
140
141
142
143
144
145
146
147
148
149
150
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber's avatar
Baber committed
151
def simple_parse_args_string(args_string: str | None) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
152
153
154
155
156
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
157
158
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
159
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
160
161
    if not args_string:
        return {}
162
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
163
    args_dict = {
164
165
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
166
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
167
    return args_dict
Leo Gao's avatar
Leo Gao committed
168

Fabrizio Milo's avatar
Fabrizio Milo committed
169

Leo Gao's avatar
Leo Gao committed
170
171
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
172
        yield from iter
Leo Gao's avatar
Leo Gao committed
173
174


175
176
177
178
179
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
180

181
182
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
183

gakada's avatar
gakada committed
184
185
# Returns a list containing all values of the source_list that
# match at least one of the patterns
Baber's avatar
Baber committed
186
def pattern_match(patterns: list[str], source_list: list[str]) -> list[str]:
187
    if isinstance(patterns, str):
188
189
        patterns = [patterns]

gakada's avatar
gakada committed
190
191
192
193
194
195
196
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
197
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
198
199
200
201
202
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber's avatar
Baber committed
203
def general_detokenize(string: str) -> str:
Leo Gao's avatar
Leo Gao committed
204
205
206
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
207
208
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
209
    string = re.sub(r" (['.,])", r"\1", string)
210
211
212
    return string


213
214
215
216
217
218
219
220
221
222
223
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
224
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
225
226
227
228
229
230


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
Baber's avatar
Baber committed
231
    return re.sub(r"[\"<>:/|\\?*\[\]]+", "__", model_name)
232
233
234
235
236
237
238
239
240


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


Baber's avatar
Baber committed
241
def get_latest_filename(filenames: list[str]) -> str:
242
243
244
245
246
247
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


Baber's avatar
Baber committed
248
def get_results_filenames(filenames: list[str]) -> list[str]:
249
250
251
252
253
254
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


Baber's avatar
Baber committed
255
def get_sample_results_filenames(filenames: list[str]) -> list[str]:
256
257
258
259
260
261
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


262
def get_rolling_token_windows(
Baber's avatar
Baber committed
263
264
    token_list: list[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[tuple[list[int], list[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
291
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
292
293
294
295
296
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
297

Jason Phang's avatar
Jason Phang committed
298
        yield (
lintangsutawika's avatar
lintangsutawika committed
299
300
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
301
302
303
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
304

305
def make_disjoint_window(
Baber's avatar
Baber committed
306
307
    pair: tuple[list[int], list[int]],
) -> tuple[list[int], list[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
308
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
309
    a, b = pair
310
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
311

Jason Phang's avatar
Jason Phang committed
312

313
314
315
316
317
318
319
320
321
322
323
324
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


325
class Reorderer:
Baber's avatar
Baber committed
326
    def __init__(self, arr: list[Any], fn: Callable) -> None:
baberabb's avatar
baberabb committed
327
328
329
330
331
332
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
333
334
335
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
336
337
338
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
339
340
341
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
342

343
    def get_reordered(self):
baberabb's avatar
baberabb committed
344
345
346
347
348
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
349
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
350

351
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
352
353
354
355
356
357
358
359
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
360
361
362
363
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
364
            for ind in inds:
365
366
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
367

368
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
369

370
371
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
372

Lintang Sutawika's avatar
Lintang Sutawika committed
373
def make_table(result_dict, column: str = "results", sort_results: bool = False):
374
    """Generate table of results."""
375
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
376

lintangsutawika's avatar
lintangsutawika committed
377
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
378
379
380
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
381

lintangsutawika's avatar
lintangsutawika committed
382
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
383
        column_name,
lintangsutawika's avatar
lintangsutawika committed
384
385
        "Version",
        "Filter",
386
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
387
        "Metric",
388
        "",
lintangsutawika's avatar
lintangsutawika committed
389
390
391
392
        "Value",
        "",
        "Stderr",
    ]
393

lintangsutawika's avatar
lintangsutawika committed
394
395
396
397
398
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

399
400
    values = []

401
402
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
403
404
405
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
406
407
408
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
409
410
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
Baber's avatar
Baber committed
411
412
        # TODO: fix this
        # higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
413
414
415
416

        if "alias" in dic:
            k = dic.pop("alias")

417
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
418
        metric_items = sorted(metric_items)
419
420

        for (mf), v in metric_items:
421
            m, _, f = mf.partition(",")
422
423
424
            if m.endswith("_stderr"):
                continue

Baber's avatar
Baber committed
425
426
427
            # hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")
            # TODO: fix
            hib = "↑"
428

Baber's avatar
Baber committed
429
            v = f"{v:.4f}" if isinstance(v, float) else v
Lintang Sutawika's avatar
Lintang Sutawika committed
430

431
432
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Baber's avatar
Baber committed
433
                se = "   N/A" if se == "N/A" else f"{se:.4f}"
Lintang Sutawika's avatar
Lintang Sutawika committed
434
                values.append([k, version, f, n, m, hib, v, "±", se])
435
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
436
                values.append([k, version, f, n, m, hib, v, "", ""])
437
438
439
440
441
442
443
444
445
446
447
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


448
449
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
450
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
451
452
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
453

Baber's avatar
Baber committed
454
455
    wraps(fn)

456
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
457
458
459
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
460
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
461
462
                "lm-evaluation-harness!"
            )
463
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
464

465
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
466

Fabrizio Milo's avatar
Fabrizio Milo committed
467

468
469
470
471
def ignore_constructor(loader, node):
    return node


472
def import_function(loader: yaml.Loader, node, yaml_path: Path):
lintangsutawika's avatar
lintangsutawika committed
473
474
    function_name = loader.construct_scalar(node)

lintangsutawika's avatar
lintangsutawika committed
475
    *module_name, function_name = function_name.split(".")
476
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
477
        module_name = ".".join(module_name)
478
    module_path = yaml_path.parent / f"{module_name}.py"
lintangsutawika's avatar
lintangsutawika committed
479

480
481
482
483
    spec = importlib.util.spec_from_file_location(module_name, module_path.as_posix())

    if spec is None:
        raise ImportError(f"Could not import module {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
484
    module = importlib.util.module_from_spec(spec)
485
486
487

    if spec.loader is None:
        raise ImportError(f"Module loader is None, {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
488
489
490
491
492
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
493

Baber's avatar
Baber committed
494
495
496
def load_yaml_config(
    yaml_path: str | None = None, yaml_config=None, yaml_dir=None, mode="full"
):
497
498
499
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
500
501
502
        if yaml_path is None:
            raise ValueError("yaml_path must be provided if mode is 'full'.")
        # Attach yaml_path to the import function so that it can be used later
Baber's avatar
Baber committed
503
        constructor_fn = partial(import_function, yaml_path=Path(yaml_path))
lintangsutawika's avatar
lintangsutawika committed
504

505
    loader = yaml.CLoader if yaml.__with_libyaml__ else yaml.FullLoader
506
    # Add the import_function constructor to the YAML loader
507
    yaml.add_constructor("!function", constructor_fn, Loader=loader)
508
509
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
510
            yaml_config = yaml.load(file, Loader=loader)
lintangsutawika's avatar
lintangsutawika committed
511

lintangsutawika's avatar
lintangsutawika committed
512
513
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
514
515
516
517
518
519
520

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

521
        if isinstance(include_path, str):
522
523
524
525
526
527
528
529
530
531
532
533
534
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
535
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
536
537
538
539
540
541
542
543
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
544
545


Ethan Smith's avatar
Ethan Smith committed
546
def regex_replace(string, pattern, repl, count: int = 0):
547
548
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
549

lintangsutawika's avatar
lintangsutawika committed
550

551
env = Environment(
Baber's avatar
Baber committed
552
    loader=BaseLoader(), undefined=StrictUndefined, keep_trailing_newline=True
553
)
554
env.filters["regex_replace"] = regex_replace
555
556


Baber's avatar
Baber committed
557
@lru_cache(maxsize=128)
Baber's avatar
Baber committed
558
def _compile(raw: str) -> Template:
Baber's avatar
Baber committed
559
560
561
    return env.from_string(raw)


baberabb's avatar
baberabb committed
562
def apply_template(template: str, doc: dict) -> str:
Baber's avatar
Baber committed
563
    rtemplate = _compile(template)
564
    return rtemplate.render(**doc)
565
566


Baber's avatar
Baber committed
567
568
569
570
571
572
573
def create_iterator(
    raw_iterator: collections.Iterator,
    *,
    rank: int = 0,
    world_size: int = 1,
    limit: int | None = None,
) -> islice:
574
575
576
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
577
578
579
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
580
581
582
583
584
585
586
587
588
589


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618


def convert_pil_to_hash(value):
    from io import BytesIO

    img_bytes = BytesIO()
    value.save(img_bytes, format="PNG")
    return hashlib.sha256(str(img_bytes).encode()).hexdigest()


def convert_bytes_to_hash(value):
    return hashlib.sha256(str(value).encode()).hexdigest()


def hash_dict_images(data_dict):
    """
    Create a deep copy of `data_dict` where all bytes and PIL.Image.Image values
    are replaced by their respective hashes using the provided converter functions.

    Parameters:
        data_dict (dict): The input dictionary with arbitrary nesting of dicts and lists.

    Returns:
        dict: A new dictionary with the same structure as `data_dict`, but with all
              bytes and PIL.Image.Image objects replaced by their hashes.
    """

    def _process_value(value):
        # Bytes -> hash
Baber Abbasi's avatar
Baber Abbasi committed
619
620
        from PIL import Image

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        if isinstance(value, (bytes, bytearray)):
            return convert_bytes_to_hash(value)
        # PIL Image -> hash
        if isinstance(value, Image.Image):
            return convert_pil_to_hash(value)
        # Nested dictionary -> recurse
        if isinstance(value, dict):
            return {k: _process_value(v) for k, v in value.items()}
        # List or tuple -> recurse, preserving type
        if isinstance(value, list):
            return [_process_value(v) for v in value]
        if isinstance(value, tuple):
            return tuple(_process_value(v) for v in value)
        # Other types remain unchanged
        return value

    # Ensure the top-level is a dict
    if not isinstance(data_dict, dict):
        raise TypeError("Input must be a dictionary")

Baber Abbasi's avatar
Baber Abbasi committed
641
642
643
644
645
    return (
        {key: _process_value(val) for key, val in data_dict.items()}
        if importlib.util.find_spec("PIL")
        else data_dict
    )