utils.py 15.5 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
11
from dataclasses import asdict, is_dataclass
12
from itertools import islice
13
from typing import Any, Callable, Generator, List, Optional, Tuple
14

Lintang Sutawika's avatar
Lintang Sutawika committed
15
import numpy as np
Baber's avatar
Baber committed
16
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
17

lintangsutawika's avatar
lintangsutawika committed
18

19
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
20

21
22
23
24
25
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
26

Lintang Sutawika's avatar
Lintang Sutawika committed
27
28
def setup_logging(verbosity=logging.INFO):
    # Configure the root logger
Baber Abbasi's avatar
Baber Abbasi committed
29
30
31
32
33
34
35
36
37
38
39
    class CustomFormatter(logging.Formatter):
        def format(self, record):
            if record.name.startswith("lm_eval."):
                record.name = record.name[len("lm_eval.") :]
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Lintang Sutawika's avatar
Lintang Sutawika committed
40
41
42
43
44
45
46
47
48
49
50
    log_level = os.environ.get("LOGLEVEL", verbosity) or verbosity

    level_map = {
        "DEBUG": logging.DEBUG,
        "INFO": logging.INFO,
        "WARNING": logging.WARNING,
        "ERROR": logging.ERROR,
        "CRITICAL": logging.CRITICAL,
    }

    log_level = level_map.get(str(log_level).upper(), logging.INFO)
Baber Abbasi's avatar
Baber Abbasi committed
51

Lintang Sutawika's avatar
Lintang Sutawika committed
52
    if not logging.root.handlers:
Baber Abbasi's avatar
Baber Abbasi committed
53
54
55
56
57
58
59
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)

        root_logger = logging.getLogger()
        root_logger.addHandler(handler)
        root_logger.setLevel(log_level)

Lintang Sutawika's avatar
Lintang Sutawika committed
60
61
62
63
64
65
66
67
        if log_level == logging.DEBUG:
            third_party_loggers = ["urllib3", "filelock", "fsspec"]
            for logger_name in third_party_loggers:
                logging.getLogger(logger_name).setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(log_level)


68
69
70
71
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


72
73
74
75
76
77
78
79
80
81
82
83
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
84
85
86
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
87
88
89
90
91
92
93
94

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
95
96
97
98
99
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
100
101
102
103
104
105
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
106
107


108
109
110
111
112
113
114
115
116
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


117
118
119
120
121
122
123
124
125
126
127
128
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber Abbasi's avatar
Baber Abbasi committed
129
def simple_parse_args_string(args_string: Optional[str]) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
130
131
132
133
134
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
135
136
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
137
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
138
139
    if not args_string:
        return {}
140
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
141
    args_dict = {
142
143
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
144
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
145
    return args_dict
Leo Gao's avatar
Leo Gao committed
146

Fabrizio Milo's avatar
Fabrizio Milo committed
147

Leo Gao's avatar
Leo Gao committed
148
149
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
150
        yield from iter
Leo Gao's avatar
Leo Gao committed
151
152


153
154
155
156
157
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
158

159
160
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
161

gakada's avatar
gakada committed
162
163
164
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
165
    if isinstance(patterns, str):
166
167
        patterns = [patterns]

gakada's avatar
gakada committed
168
169
170
171
172
173
174
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
175
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
176
177
178
179
180
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber Abbasi's avatar
Baber Abbasi committed
181
def general_detokenize(string) -> str:
Leo Gao's avatar
Leo Gao committed
182
183
184
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
185
186
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
187
    string = re.sub(r" (['.,])", r"\1", string)
188
189
190
    return string


191
192
193
194
195
196
197
198
199
200
201
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
202
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


def get_latest_filename(filenames: List[str]) -> str:
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


def get_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


def get_sample_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


240
241
242
def get_rolling_token_windows(
    token_list: List[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[Tuple[List[int], List[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
269
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
270
271
272
273
274
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
275

Jason Phang's avatar
Jason Phang committed
276
        yield (
lintangsutawika's avatar
lintangsutawika committed
277
278
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
279
280
281
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
282

283
284
285
def make_disjoint_window(
    pair: Tuple[List[int], List[int]],
) -> Tuple[List[int], List[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
286
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
287
    a, b = pair
288
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
289

Jason Phang's avatar
Jason Phang committed
290

291
292
293
294
295
296
297
298
299
300
301
302
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


303
class Reorderer:
baberabb's avatar
baberabb committed
304
305
306
307
308
309
310
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
311
312
313
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
314
315
316
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
317
318
319
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
320

321
    def get_reordered(self):
baberabb's avatar
baberabb committed
322
323
324
325
326
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
327
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
328

329
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
330
331
332
333
334
335
336
337
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
338
339
340
341
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
342
            for ind in inds:
343
344
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
345

346
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
347

348
349
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
350

Lintang Sutawika's avatar
Lintang Sutawika committed
351
def make_table(result_dict, column: str = "results", sort_results: bool = False):
352
    """Generate table of results."""
353
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
354

lintangsutawika's avatar
lintangsutawika committed
355
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
356
357
358
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
359

lintangsutawika's avatar
lintangsutawika committed
360
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
361
        column_name,
lintangsutawika's avatar
lintangsutawika committed
362
363
        "Version",
        "Filter",
364
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
365
        "Metric",
366
        "",
lintangsutawika's avatar
lintangsutawika committed
367
368
369
370
        "Value",
        "",
        "Stderr",
    ]
371

lintangsutawika's avatar
lintangsutawika committed
372
373
374
375
376
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

377
378
    values = []

379
380
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
381
382
383
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
384
385
386
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
387
388
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
389
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
390
391
392
393

        if "alias" in dic:
            k = dic.pop("alias")

394
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
395
        metric_items = sorted(metric_items)
396
397

        for (mf), v in metric_items:
398
            m, _, f = mf.partition(",")
399
400
401
            if m.endswith("_stderr"):
                continue

402
403
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

Lintang Sutawika's avatar
Lintang Sutawika committed
404
405
            v = "%.4f" % v if isinstance(v, float) else v

406
407
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Lintang Sutawika's avatar
Lintang Sutawika committed
408
                se = "   N/A" if se == "N/A" else "%.4f" % se
Lintang Sutawika's avatar
Lintang Sutawika committed
409
                values.append([k, version, f, n, m, hib, v, "±", se])
410
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
411
                values.append([k, version, f, n, m, hib, v, "", ""])
412
413
414
415
416
417
418
419
420
421
422
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


423
424
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
425
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
426
427
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
428

429
430
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
431
432
433
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
434
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
435
436
                "lm-evaluation-harness!"
            )
437
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
438

439
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
440

Fabrizio Milo's avatar
Fabrizio Milo committed
441

442
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
443
444
445
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
446
447
448
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
449
450
451
452
453
454
455
456
457
458


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487


def convert_pil_to_hash(value):
    from io import BytesIO

    img_bytes = BytesIO()
    value.save(img_bytes, format="PNG")
    return hashlib.sha256(str(img_bytes).encode()).hexdigest()


def convert_bytes_to_hash(value):
    return hashlib.sha256(str(value).encode()).hexdigest()


def hash_dict_images(data_dict):
    """
    Create a deep copy of `data_dict` where all bytes and PIL.Image.Image values
    are replaced by their respective hashes using the provided converter functions.

    Parameters:
        data_dict (dict): The input dictionary with arbitrary nesting of dicts and lists.

    Returns:
        dict: A new dictionary with the same structure as `data_dict`, but with all
              bytes and PIL.Image.Image objects replaced by their hashes.
    """

    def _process_value(value):
        # Bytes -> hash
Baber Abbasi's avatar
Baber Abbasi committed
488
489
        from PIL import Image

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
        if isinstance(value, (bytes, bytearray)):
            return convert_bytes_to_hash(value)
        # PIL Image -> hash
        if isinstance(value, Image.Image):
            return convert_pil_to_hash(value)
        # Nested dictionary -> recurse
        if isinstance(value, dict):
            return {k: _process_value(v) for k, v in value.items()}
        # List or tuple -> recurse, preserving type
        if isinstance(value, list):
            return [_process_value(v) for v in value]
        if isinstance(value, tuple):
            return tuple(_process_value(v) for v in value)
        # Other types remain unchanged
        return value

    # Ensure the top-level is a dict
    if not isinstance(data_dict, dict):
        raise TypeError("Input must be a dictionary")

Baber Abbasi's avatar
Baber Abbasi committed
510
511
512
513
514
    return (
        {key: _process_value(val) for key, val in data_dict.items()}
        if importlib.util.find_spec("PIL")
        else data_dict
    )
Baber's avatar
Baber committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536


def regex_replace(string, pattern, repl, count: int = 0):
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)


@functools.lru_cache(maxsize=256)
def _compile_tpl(src: str):
    return apply_template._env.from_string(src)


def apply_template(template: str, doc: dict) -> str:
    if not hasattr(apply_template, "_env"):
        apply_template._env = Environment(
            loader=BaseLoader(),
            undefined=StrictUndefined,
            keep_trailing_newline=True,
        )
        apply_template._env.filters["regex_replace"] = regex_replace

    return _compile_tpl(template).render(**doc)