utils.py 21.8 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

baberabb's avatar
baberabb committed
13
from typing import Iterator, List, Literal, Union, Any, Callable
14

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
lintangsutawika's avatar
lintangsutawika committed
18
import numpy as np
sdtblck's avatar
sdtblck committed
19

20
from jinja2 import BaseLoader, Environment, StrictUndefined
21
from itertools import islice
sdtblck's avatar
sdtblck committed
22

23
import logging
lintangsutawika's avatar
lintangsutawika committed
24

25
26
27
28
29
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
30
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
31

32
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
33
34


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
58
59
60
61
62
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
63
64
65
66
67
68
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
69
70


Jason Phang's avatar
gpt3  
Jason Phang committed
71
72
73
74
75
76
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
77
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
78
79
    if not args_string:
        return {}
80
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
81
82
83
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
84
    return args_dict
Leo Gao's avatar
Leo Gao committed
85

Fabrizio Milo's avatar
Fabrizio Milo committed
86

Leo Gao's avatar
Leo Gao committed
87
88
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
89
        yield from iter
Leo Gao's avatar
Leo Gao committed
90
91


Ethan Smith's avatar
Ethan Smith committed
92
def chunks(iter, n: int = 0, fn=None):
baberabb's avatar
baberabb committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    """
    Divides an iterable into chunks of specified size or based on a given function.
    Useful for batching

    Parameters:
    - iter: The input iterable to be divided into chunks.
    - n: An integer representing the size of each chunk. Default is 0.
    - fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.

    Returns:
    An iterator that yields chunks of the input iterable.

    Example usage:
    ```
    data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    for chunk in chunks(data, 3):
        print(chunk)
    ```
    Output:
    ```
    [1, 2, 3]
    [4, 5, 6]
    [7, 8, 9]
    [10]
    ```
    """
Leo Gao's avatar
Leo Gao committed
119
    arr = []
120
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
121
        arr.append(x)
122
        if len(arr) == (fn(i, iter) if fn else n):
Leo Gao's avatar
Leo Gao committed
123
124
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
125
126
127
128

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
129

130
131
132
133
134
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
135

136
137
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
138

gakada's avatar
gakada committed
139
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
140
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
141
142
143
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
144
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
145
        for value in values.split(","):
146
147
148
149
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
150
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
151
152
        return True

Ethan Smith's avatar
Ethan Smith committed
153
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
154
155
156
157
158
159
160
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
161
162
163
    if type(patterns) == str:
        patterns = [patterns]

gakada's avatar
gakada committed
164
165
166
167
168
169
170
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


lintangsutawika's avatar
lintangsutawika committed
171
172
173
174
175
176
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Leo Gao's avatar
Leo Gao committed
177
178
179
180
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
181
182
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
183
    string = re.sub(r" (['.,])", r"\1", string)
184
185
186
    return string


Jason Phang's avatar
Jason Phang committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
214
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
215
216
217
218
219
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
220

Jason Phang's avatar
Jason Phang committed
221
        yield (
lintangsutawika's avatar
lintangsutawika committed
222
223
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
224
225
226
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
227

Leo Gao's avatar
Leo Gao committed
228
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
229
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
230
    a, b = pair
231
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
232

Jason Phang's avatar
Jason Phang committed
233

234
class Reorderer:
baberabb's avatar
baberabb committed
235
236
237
238
239
240
241
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
242
243
244
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
245
246
247
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
248
249
250
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
251

252
    def get_reordered(self):
baberabb's avatar
baberabb committed
253
254
255
256
257
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
258
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
259

260
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
261
262
263
264
265
266
267
268
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
269
270
271
272
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
273
            for ind in inds:
274
275
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
276

277
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
278

279
280
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
281

haileyschoelkopf's avatar
haileyschoelkopf committed
282
283
284
285
286
287
288
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
289
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
340
def make_table(result_dict, column: str = "results"):
341
342
343
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

lintangsutawika's avatar
lintangsutawika committed
344
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
345
346
347
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
348

lintangsutawika's avatar
lintangsutawika committed
349
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
350
        column_name,
lintangsutawika's avatar
lintangsutawika committed
351
352
        "Version",
        "Filter",
353
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
354
355
356
357
358
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
359

lintangsutawika's avatar
lintangsutawika committed
360
361
362
363
364
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

365
366
    values = []

lintangsutawika's avatar
lintangsutawika committed
367
    for k, dic in result_dict[column].items():
368
        version = result_dict["versions"][k]
369
        n = str(result_dict["n-shot"][k])
370
371
372
373

        if "alias" in dic:
            k = dic.pop("alias")

374
375
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
376
377
378
            if m.endswith("_stderr"):
                continue

379
380
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
381
382
383
                if se != "N/A":
                    se = "%.4f" % se
                values.append([k, version, f, n, m, "%.4f" % v, "±", se])
384
            else:
385
                values.append([k, version, f, n, m, "%.4f" % v, "", ""])
386
387
388
389
390
391
392
393
394
395
396
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


397
398
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
399
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
400
401
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
402

403
404
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
405
406
407
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
408
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
409
410
                "lm-evaluation-harness!"
            )
411
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
412

413
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
414

Fabrizio Milo's avatar
Fabrizio Milo committed
415

Stephen Hogg's avatar
Stephen Hogg committed
416
417
418
419
420
421
422
423
424
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
425
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
426
427
428
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
429
430
431
432
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
433
434

@positional_deprecated
435
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
436
437
438
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
439
440
    import pytest

441
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
442
443
444
445
446
447
448
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
449
450
451
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
452
453
454
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
455
456


457
458
459
460
461
462
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
463
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
464
        git_hash = git_hash.decode()
465
466
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
467
468
469
470
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
471
472
473
474
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
475
476
477
478
    *module_name, function_name = function_name.split(".")
    if type(module_name) == list:
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
479
480
481
482
483
484
485
486

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
487

lintangsutawika's avatar
lintangsutawika committed
488
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
489
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
490
491


492
493
494
495
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
496

lintangsutawika's avatar
lintangsutawika committed
497
498
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

        if type(include_path) == str:
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
529
530


Ethan Smith's avatar
Ethan Smith committed
531
def regex_replace(string, pattern, repl, count: int = 0):
532
533
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
534

lintangsutawika's avatar
lintangsutawika committed
535

536
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
537
env.filters["regex_replace"] = regex_replace
538
539


baberabb's avatar
baberabb committed
540
def apply_template(template: str, doc: dict) -> str:
541
542
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
543
544


545
546
547
548
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
549
550
551
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
552
553


haileyschoelkopf's avatar
haileyschoelkopf committed
554
555
556
557
558
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
559
560
561
562
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
563
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
564
565
566
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
567

lintangsutawika's avatar
lintangsutawika committed
568
    for i, tensor in enumerate(tensors):
569
570
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
571
572
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
573
574
575
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
576
577
578
579
580
581
582
583
584
585
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
586
587
588
589
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
590
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
591
                            max_length - tensor_len,
592
593
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
594
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
595
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
596
597
598
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
599
600
601
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
602
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
603
604


Ethan Smith's avatar
Ethan Smith committed
605
def clear_torch_cache() -> None:
606
607
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
608
609


lintangsutawika's avatar
lintangsutawika committed
610
611
612
613
614
615
616
617
618
619
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
620
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
621
622
623
624
625
626
627
628
629
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
630
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
631
632
633
634
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
635
636
637
638
639
640
641
642
        # we look back for 2 more tokens than it takes to encode our stop sequence
        # because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']`
        # and we don't want to mistakenly not stop a generation because our
        # (string) stop sequence was output in a different tokenization

        # NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model,
        # and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized
        self.sequence_id_len = len(self.sequence_ids) + 2
haileyschoelkopf's avatar
haileyschoelkopf committed
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)
        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )
baberabb's avatar
baberabb committed
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725


# from more_itertools
def divide(iterable, n) -> List[Iterator]:
    """Divide the elements from *iterable* into *n* parts, maintaining
    order.

        >>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6])
        >>> list(group_1)
        [1, 2, 3]
        >>> list(group_2)
        [4, 5, 6]

    If the length of *iterable* is not evenly divisible by *n*, then the
    length of the returned iterables will not be identical:

        >>> children = divide(3, [1, 2, 3, 4, 5, 6, 7])
        >>> [list(c) for c in children]
        [[1, 2, 3], [4, 5], [6, 7]]

    If the length of the iterable is smaller than n, then the last returned
    iterables will be empty:

        >>> children = divide(5, [1, 2, 3])
        >>> [list(c) for c in children]
        [[1], [2], [3], [], []]

    This function will exhaust the iterable before returning and may require
    significant storage. If order is not important, see :func:`distribute`,
    which does not first pull the iterable into memory.

    """
    if n < 1:
        raise ValueError("n must be at least 1")

    try:
        iterable[:0]
    except TypeError:
        seq = tuple(iterable)
    else:
        seq = iterable

    q, r = divmod(len(seq), n)

    ret = []
    stop = 0
    for i in range(1, n + 1):
        start = stop
        stop += q + 1 if i <= r else q
        ret.append(iter(seq[start:stop]))

    return ret