utils.py 20.3 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

baberabb's avatar
baberabb committed
13
from typing import Iterator, List, Literal, Union, Any, Callable
14

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
sdtblck's avatar
sdtblck committed
18

19
from jinja2 import BaseLoader, Environment, StrictUndefined
20
from itertools import islice
sdtblck's avatar
sdtblck committed
21

22
import logging
lintangsutawika's avatar
lintangsutawika committed
23

24
25
26
27
28
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
29
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
30

31
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
32
33


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
57
58
59
60
61
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
62
63
64
65
66
67
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
68
69


Jason Phang's avatar
gpt3  
Jason Phang committed
70
71
72
73
74
75
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
76
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
77
78
    if not args_string:
        return {}
79
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
80
81
82
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
83
    return args_dict
Leo Gao's avatar
Leo Gao committed
84

Fabrizio Milo's avatar
Fabrizio Milo committed
85

Leo Gao's avatar
Leo Gao committed
86
87
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
88
        yield from iter
Leo Gao's avatar
Leo Gao committed
89
90


Ethan Smith's avatar
Ethan Smith committed
91
def chunks(iter, n: int = 0, fn=None):
baberabb's avatar
baberabb committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    """
    Divides an iterable into chunks of specified size or based on a given function.
    Useful for batching

    Parameters:
    - iter: The input iterable to be divided into chunks.
    - n: An integer representing the size of each chunk. Default is 0.
    - fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.

    Returns:
    An iterator that yields chunks of the input iterable.

    Example usage:
    ```
    data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    for chunk in chunks(data, 3):
        print(chunk)
    ```
    Output:
    ```
    [1, 2, 3]
    [4, 5, 6]
    [7, 8, 9]
    [10]
    ```
    """
Leo Gao's avatar
Leo Gao committed
118
    arr = []
119
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
120
        arr.append(x)
121
        if len(arr) == (fn(i, iter) if fn else n):
Leo Gao's avatar
Leo Gao committed
122
123
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
124
125
126
127

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
128

129
130
131
132
133
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
134

135
136
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
137

gakada's avatar
gakada committed
138
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
139
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
140
141
142
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
143
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
144
        for value in values.split(","):
145
146
147
148
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
149
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
150
151
        return True

Ethan Smith's avatar
Ethan Smith committed
152
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
153
154
155
156
157
158
159
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
160
161
162
    if type(patterns) == str:
        patterns = [patterns]

gakada's avatar
gakada committed
163
164
165
166
167
168
169
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
170
171
172
173
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
174
175
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
176
    string = re.sub(r" (['.,])", r"\1", string)
177
178
179
    return string


Jason Phang's avatar
Jason Phang committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
207
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
208
209
210
211
212
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
213

Jason Phang's avatar
Jason Phang committed
214
        yield (
lintangsutawika's avatar
lintangsutawika committed
215
216
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
217
218
219
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
220

Leo Gao's avatar
Leo Gao committed
221
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
222
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
223
    a, b = pair
224
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
225

Jason Phang's avatar
Jason Phang committed
226

227
class Reorderer:
baberabb's avatar
baberabb committed
228
229
230
231
232
233
234
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
235
236
237
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
238
239
240
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
241
242
243
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
244

245
    def get_reordered(self):
baberabb's avatar
baberabb committed
246
247
248
249
250
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
251
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
252

253
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
254
255
256
257
258
259
260
261
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
262
263
264
265
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
266
            for ind in inds:
267
268
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
269

270
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
271

272
273
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
274

haileyschoelkopf's avatar
haileyschoelkopf committed
275
276
277
278
279
280
281
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
282
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
333
def make_table(result_dict, column: str = "results"):
334
335
336
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

lintangsutawika's avatar
lintangsutawika committed
337
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
338
339
340
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
341

lintangsutawika's avatar
lintangsutawika committed
342
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
343
        column_name,
lintangsutawika's avatar
lintangsutawika committed
344
345
        "Version",
        "Filter",
346
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
347
348
349
350
351
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
352

lintangsutawika's avatar
lintangsutawika committed
353
354
355
356
357
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

358
359
    values = []

lintangsutawika's avatar
lintangsutawika committed
360
    for k, dic in result_dict[column].items():
361
        version = result_dict["versions"][k]
362
        n = str(result_dict["n-shot"][k])
363
364
365
366

        if "alias" in dic:
            k = dic.pop("alias")

367
368
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
369
370
371
            if m.endswith("_stderr"):
                continue

372
373
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
374
375
376
                if se != "N/A":
                    se = "%.4f" % se
                values.append([k, version, f, n, m, "%.4f" % v, "±", se])
377
            else:
378
                values.append([k, version, f, n, m, "%.4f" % v, "", ""])
379
380
381
382
383
384
385
386
387
388
389
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


390
391
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
392
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
393
394
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
395

396
397
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
398
399
400
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
401
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
402
403
                "lm-evaluation-harness!"
            )
404
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
405

406
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
407

Fabrizio Milo's avatar
Fabrizio Milo committed
408

Stephen Hogg's avatar
Stephen Hogg committed
409
410
411
412
413
414
415
416
417
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
418
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
419
420
421
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
422
423
424
425
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
426
427

@positional_deprecated
428
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
429
430
431
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
432
433
    import pytest

434
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
435
436
437
438
439
440
441
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
442
443
444
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
445
446
447
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
448
449


450
451
452
453
454
455
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
456
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
457
        git_hash = git_hash.decode()
458
459
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
460
461
462
463
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
464
465
466
467
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
468
469
470
471
    *module_name, function_name = function_name.split(".")
    if type(module_name) == list:
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
472
473
474
475
476
477
478
479

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
480

lintangsutawika's avatar
lintangsutawika committed
481
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
482
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
483
484


485
486
487
488
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
489

lintangsutawika's avatar
lintangsutawika committed
490
491
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

        if type(include_path) == str:
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
522
523


Ethan Smith's avatar
Ethan Smith committed
524
def regex_replace(string, pattern, repl, count: int = 0):
525
526
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
527

lintangsutawika's avatar
lintangsutawika committed
528

529
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
530
env.filters["regex_replace"] = regex_replace
531
532


baberabb's avatar
baberabb committed
533
def apply_template(template: str, doc: dict) -> str:
534
535
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
536
537


538
539
540
541
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
542
543
544
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
545
546


haileyschoelkopf's avatar
haileyschoelkopf committed
547
548
549
550
551
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
552
553
554
555
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
556
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
557
558
559
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
560

lintangsutawika's avatar
lintangsutawika committed
561
    for i, tensor in enumerate(tensors):
562
563
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
564
565
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
566
567
568
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
569
570
571
572
573
574
575
576
577
578
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
579
580
581
582
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
583
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
584
                            max_length - tensor_len,
585
586
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
587
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
588
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
589
590
591
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
592
593
594
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
595
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
596
597


Ethan Smith's avatar
Ethan Smith committed
598
def clear_torch_cache() -> None:
599
600
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
601
602


lintangsutawika's avatar
lintangsutawika committed
603
604
605
606
607
608
609
610
611
612
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
613
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
614
615
616
617
618
619
620
621
622
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
623
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
624
625
626
627
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
628
629
630
631
632
633
634
635
        # we look back for 2 more tokens than it takes to encode our stop sequence
        # because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']`
        # and we don't want to mistakenly not stop a generation because our
        # (string) stop sequence was output in a different tokenization

        # NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model,
        # and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized
        self.sequence_id_len = len(self.sequence_ids) + 2
haileyschoelkopf's avatar
haileyschoelkopf committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)
        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )