utils.py 20.8 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

3
4
import collections
import fnmatch
Baber's avatar
Baber committed
5
import functools
6
import hashlib
7
import importlib.util
8
import inspect
9
import json
10
11
12
import logging
import os
import re
Baber's avatar
Baber committed
13
from collections.abc import Generator
14
from dataclasses import asdict, is_dataclass
Baber's avatar
Baber committed
15
from functools import lru_cache, partial, wraps
16
from itertools import islice
17
from pathlib import Path
Baber's avatar
Baber committed
18
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple
19

Lintang Sutawika's avatar
Lintang Sutawika committed
20
import numpy as np
21
import yaml
Baber's avatar
Baber committed
22
from jinja2 import BaseLoader, Environment, StrictUndefined, Template
sdtblck's avatar
sdtblck committed
23

lintangsutawika's avatar
lintangsutawika committed
24

25
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
26

27
28
29
30
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def wrap_text(string: str, width: int = 140, **kwargs) -> Optional[str]:
    """
    Wraps the given string to the specified width.
    """
    import textwrap

    return textwrap.fill(
        inspect.cleandoc(string),
        width=width,
        initial_indent="",
        subsequent_indent=" " * 8,
        break_long_words=False,
        break_on_hyphens=False,
        **kwargs,
    )


Baber's avatar
Baber committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

def get_logger(level: Optional[str] = None) -> logging.Logger:
    """
    Get a logger with a stream handler that captures all lm_eval logs.

    Args:
        level (Optional[str]): The logging level.
    Example:
        >>> logger = get_logger("INFO")
        >>> logger.info("Log this")
        INFO:lm_eval:Log this!

    Returns:
        logging.Logger: The logger.
    """
    logger = logging.getLogger("lm_eval")
    if not logger.hasHandlers():
        logger.addHandler(logging.StreamHandler())
        logger.setLevel(logging.INFO)
    if level is not None:
        level = getattr(logging, level.upper())
        logger.setLevel(level)
    return logger


def setup_logging(verbosity=logging.INFO, suppress_third_party=True):
    """
    Configure logging for the lm_eval CLI application.

    WARNING: This function is intended for CLI use only. Library users should
    use get_logger() instead to avoid interfering with their application's
    logging configuration.

    Args:
        verbosity: Log level (int) or string name. Can be overridden by LOGLEVEL env var.
        suppress_third_party: Whether to suppress verbose third-party library logs.

    Returns:
        logging.Logger: The configured lm_eval logger instance.
    """
    # Validate verbosity parameter
    if isinstance(verbosity, str):
        level_map = {
            "DEBUG": logging.DEBUG,
            "INFO": logging.INFO,
            "WARNING": logging.WARNING,
            "ERROR": logging.ERROR,
            "CRITICAL": logging.CRITICAL,
        }
        verbosity = level_map.get(verbosity.upper(), logging.INFO)
    elif not isinstance(verbosity, int):
        verbosity = logging.INFO

    # Get log level from environment or use default
    if log_level_env := os.environ.get("LOGLEVEL", None):
        level_map = {
            "DEBUG": logging.DEBUG,
            "INFO": logging.INFO,
            "WARNING": logging.WARNING,
            "ERROR": logging.ERROR,
            "CRITICAL": logging.CRITICAL,
        }
        log_level = level_map.get(log_level_env.upper(), verbosity)
    else:
        log_level = verbosity

    # Get the lm_eval logger directly
    logger = logging.getLogger("lm_eval")

    # Configure custom formatter
Baber Abbasi's avatar
Baber Abbasi committed
118
119
120
121
122
123
124
125
126
127
128
    class CustomFormatter(logging.Formatter):
        def format(self, record):
            if record.name.startswith("lm_eval."):
                record.name = record.name[len("lm_eval.") :]
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Baber's avatar
Baber committed
129
130
131
132
133
    # Check if handler already exists to prevent duplicates
    has_stream_handler = any(
        isinstance(h, logging.StreamHandler) for h in logger.handlers
    )
    if not has_stream_handler:
Baber Abbasi's avatar
Baber Abbasi committed
134
135
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)
Baber's avatar
Baber committed
136
137
138
        logger.addHandler(handler)
        # For CLI use, we disable propagation to avoid duplicate messages
        logger.propagate = False
Baber Abbasi's avatar
Baber Abbasi committed
139

Baber's avatar
Baber committed
140
141
    # Set the logger level
    logger.setLevel(log_level)
Baber Abbasi's avatar
Baber Abbasi committed
142

Baber's avatar
Baber committed
143
144
145
146
147
148
149
    # Optionally suppress verbose third-party library logs
    if suppress_third_party and log_level == logging.DEBUG:
        third_party_loggers = ["urllib3", "filelock", "fsspec"]
        for logger_name in third_party_loggers:
            logging.getLogger(logger_name).setLevel(logging.INFO)

    return logger
Lintang Sutawika's avatar
Lintang Sutawika committed
150
151


152
153
154
155
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


156
157
158
159
160
161
162
163
164
165
166
167
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
168
169
170
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
171
172
173
174
175

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

Baber's avatar
Baber committed
176
    return re.split(r"(?<!\\)" + sep_char, text, maxsplit=maxsplit)
177
178


haileyschoelkopf's avatar
haileyschoelkopf committed
179
180
181
182
183
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
184
185
186
187
188
189
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
190
191


192
def handle_non_serializable(o):
Baber's avatar
Baber committed
193
    if isinstance(o, np.integer):
194
195
196
197
198
199
200
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


201
202
203
204
205
206
207
208
209
210
211
212
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber's avatar
Baber committed
213
def simple_parse_args_string(args_string: str | None) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
214
215
216
217
218
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
219
220
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
221
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
222
223
    if not args_string:
        return {}
224
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
225
    args_dict = {
226
227
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
228
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
229
    return args_dict
Leo Gao's avatar
Leo Gao committed
230

Fabrizio Milo's avatar
Fabrizio Milo committed
231

Leo Gao's avatar
Leo Gao committed
232
233
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
234
        yield from iter
Leo Gao's avatar
Leo Gao committed
235
236


237
238
239
240
241
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
242

243
244
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
245

gakada's avatar
gakada committed
246
247
# Returns a list containing all values of the source_list that
# match at least one of the patterns
Baber's avatar
Baber committed
248
def pattern_match(patterns: list[str], source_list: list[str]) -> list[str]:
249
    if isinstance(patterns, str):
250
251
        patterns = [patterns]

gakada's avatar
gakada committed
252
253
254
255
256
257
258
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
259
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
260
261
262
263
264
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber's avatar
Baber committed
265
def general_detokenize(string: str) -> str:
Leo Gao's avatar
Leo Gao committed
266
267
268
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
269
270
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
271
    string = re.sub(r" (['.,])", r"\1", string)
272
273
274
    return string


275
276
277
278
279
280
281
282
283
284
285
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
286
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
287
288
289
290
291
292


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
Baber's avatar
Baber committed
293
    return re.sub(r"[\"<>:/|\\?*\[\]]+", "__", model_name)
294
295
296
297
298
299
300
301
302


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


Baber's avatar
Baber committed
303
def get_latest_filename(filenames: list[str]) -> str:
304
305
306
307
308
309
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


Baber's avatar
Baber committed
310
def get_results_filenames(filenames: list[str]) -> list[str]:
311
312
313
314
315
316
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


Baber's avatar
Baber committed
317
def get_sample_results_filenames(filenames: list[str]) -> list[str]:
318
319
320
321
322
323
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


324
def get_rolling_token_windows(
Baber's avatar
Baber committed
325
326
    token_list: list[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[tuple[list[int], list[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
353
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
354
355
356
357
358
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
359

Jason Phang's avatar
Jason Phang committed
360
        yield (
lintangsutawika's avatar
lintangsutawika committed
361
362
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
363
364
365
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
366

367
def make_disjoint_window(
Baber's avatar
Baber committed
368
369
    pair: tuple[list[int], list[int]],
) -> tuple[list[int], list[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
370
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
371
    a, b = pair
372
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
373

Jason Phang's avatar
Jason Phang committed
374

375
376
377
378
379
380
381
382
383
384
385
386
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


387
class Reorderer:
Baber's avatar
Baber committed
388
    def __init__(self, arr: list[Any], fn: Callable) -> None:
baberabb's avatar
baberabb committed
389
390
391
392
393
394
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
395
396
397
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
398
399
400
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
401
402
403
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
404

405
    def get_reordered(self):
baberabb's avatar
baberabb committed
406
407
408
409
410
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
411
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
412

413
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
414
415
416
417
418
419
420
421
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
422
423
424
425
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
426
            for ind in inds:
427
428
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
429

430
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
431

432
433
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
434

Lintang Sutawika's avatar
Lintang Sutawika committed
435
def make_table(result_dict, column: str = "results", sort_results: bool = False):
436
    """Generate table of results."""
437
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
438

lintangsutawika's avatar
lintangsutawika committed
439
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
440
441
442
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
443

lintangsutawika's avatar
lintangsutawika committed
444
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
445
        column_name,
lintangsutawika's avatar
lintangsutawika committed
446
447
        "Version",
        "Filter",
448
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
449
        "Metric",
450
        "",
lintangsutawika's avatar
lintangsutawika committed
451
452
453
454
        "Value",
        "",
        "Stderr",
    ]
455

lintangsutawika's avatar
lintangsutawika committed
456
457
458
459
460
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

461
462
    values = []

463
464
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
465
466
467
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
468
469
470
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
471
472
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
Baber's avatar
Baber committed
473
474
        # TODO: fix this
        # higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
475
476
477
478

        if "alias" in dic:
            k = dic.pop("alias")

479
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
480
        metric_items = sorted(metric_items)
481
482

        for (mf), v in metric_items:
483
            m, _, f = mf.partition(",")
484
485
486
            if m.endswith("_stderr"):
                continue

Baber's avatar
Baber committed
487
488
489
            # hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")
            # TODO: fix
            hib = "↑"
490

Baber's avatar
Baber committed
491
            v = f"{v:.4f}" if isinstance(v, float) else v
Lintang Sutawika's avatar
Lintang Sutawika committed
492

493
494
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Baber's avatar
Baber committed
495
                se = "   N/A" if se == "N/A" else f"{se:.4f}"
Lintang Sutawika's avatar
Lintang Sutawika committed
496
                values.append([k, version, f, n, m, hib, v, "±", se])
497
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
498
                values.append([k, version, f, n, m, hib, v, "", ""])
499
500
501
502
503
504
505
506
507
508
509
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


510
511
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
512
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
513
514
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
515

Baber's avatar
Baber committed
516
517
    wraps(fn)

518
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
519
520
521
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
522
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
523
524
                "lm-evaluation-harness!"
            )
525
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
526

527
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
528

Fabrizio Milo's avatar
Fabrizio Milo committed
529

530
531
532
533
def ignore_constructor(loader, node):
    return node


534
def import_function(loader: yaml.Loader, node, yaml_path: Path):
lintangsutawika's avatar
lintangsutawika committed
535
536
    function_name = loader.construct_scalar(node)

lintangsutawika's avatar
lintangsutawika committed
537
    *module_name, function_name = function_name.split(".")
538
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
539
        module_name = ".".join(module_name)
540
    module_path = yaml_path.parent / f"{module_name}.py"
lintangsutawika's avatar
lintangsutawika committed
541

542
543
544
545
    spec = importlib.util.spec_from_file_location(module_name, module_path.as_posix())

    if spec is None:
        raise ImportError(f"Could not import module {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
546
    module = importlib.util.module_from_spec(spec)
547
548
549

    if spec.loader is None:
        raise ImportError(f"Module loader is None, {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
550
551
552
553
554
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
555

Baber's avatar
Baber committed
556
557
558
def load_yaml_config(
    yaml_path: str | None = None, yaml_config=None, yaml_dir=None, mode="full"
):
559
560
561
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
562
563
564
        if yaml_path is None:
            raise ValueError("yaml_path must be provided if mode is 'full'.")
        # Attach yaml_path to the import function so that it can be used later
Baber's avatar
Baber committed
565
        constructor_fn = partial(import_function, yaml_path=Path(yaml_path))
lintangsutawika's avatar
lintangsutawika committed
566

567
    loader = yaml.CLoader if yaml.__with_libyaml__ else yaml.FullLoader
568
    # Add the import_function constructor to the YAML loader
569
    yaml.add_constructor("!function", constructor_fn, Loader=loader)
570
571
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
572
            yaml_config = yaml.load(file, Loader=loader)
lintangsutawika's avatar
lintangsutawika committed
573

lintangsutawika's avatar
lintangsutawika committed
574
575
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
576
577
578
579
580
581
582

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

583
        if isinstance(include_path, str):
584
585
586
587
588
589
590
591
592
593
594
595
596
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
597
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
598
599
600
601
602
603
604
605
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
606
607


Ethan Smith's avatar
Ethan Smith committed
608
def regex_replace(string, pattern, repl, count: int = 0):
609
610
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
611

lintangsutawika's avatar
lintangsutawika committed
612

613
env = Environment(
Baber's avatar
Baber committed
614
    loader=BaseLoader(), undefined=StrictUndefined, keep_trailing_newline=True
615
)
616
env.filters["regex_replace"] = regex_replace
617
618


Baber's avatar
Baber committed
619
@lru_cache(maxsize=128)
Baber's avatar
Baber committed
620
def _compile(raw: str) -> Template:
Baber's avatar
Baber committed
621
622
623
    return env.from_string(raw)


baberabb's avatar
baberabb committed
624
def apply_template(template: str, doc: dict) -> str:
Baber's avatar
Baber committed
625
    rtemplate = _compile(template)
626
    return rtemplate.render(**doc)
627
628


Baber's avatar
Baber committed
629
630
631
632
633
634
635
def create_iterator(
    raw_iterator: collections.Iterator,
    *,
    rank: int = 0,
    world_size: int = 1,
    limit: int | None = None,
) -> islice:
636
637
638
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
639
640
641
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
642
643
644
645
646
647
648
649
650
651


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680


def convert_pil_to_hash(value):
    from io import BytesIO

    img_bytes = BytesIO()
    value.save(img_bytes, format="PNG")
    return hashlib.sha256(str(img_bytes).encode()).hexdigest()


def convert_bytes_to_hash(value):
    return hashlib.sha256(str(value).encode()).hexdigest()


def hash_dict_images(data_dict):
    """
    Create a deep copy of `data_dict` where all bytes and PIL.Image.Image values
    are replaced by their respective hashes using the provided converter functions.

    Parameters:
        data_dict (dict): The input dictionary with arbitrary nesting of dicts and lists.

    Returns:
        dict: A new dictionary with the same structure as `data_dict`, but with all
              bytes and PIL.Image.Image objects replaced by their hashes.
    """

    def _process_value(value):
        # Bytes -> hash
Baber Abbasi's avatar
Baber Abbasi committed
681
682
        from PIL import Image

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        if isinstance(value, (bytes, bytearray)):
            return convert_bytes_to_hash(value)
        # PIL Image -> hash
        if isinstance(value, Image.Image):
            return convert_pil_to_hash(value)
        # Nested dictionary -> recurse
        if isinstance(value, dict):
            return {k: _process_value(v) for k, v in value.items()}
        # List or tuple -> recurse, preserving type
        if isinstance(value, list):
            return [_process_value(v) for v in value]
        if isinstance(value, tuple):
            return tuple(_process_value(v) for v in value)
        # Other types remain unchanged
        return value

    # Ensure the top-level is a dict
    if not isinstance(data_dict, dict):
        raise TypeError("Input must be a dictionary")

Baber Abbasi's avatar
Baber Abbasi committed
703
704
705
706
707
    return (
        {key: _process_value(val) for key, val in data_dict.items()}
        if importlib.util.find_spec("PIL")
        else data_dict
    )