task.py 40.4 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

16
17
from typing import Union
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
73
    use_prompt: str = None
74
    description: str = ""
75
76
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
77
    # runtime configuration options
78
    num_fewshot: int = 0
79
    # scoring options
80
81
    metric_list: str = None
    output_type: str = "greedy_until"
82
    generation_kwargs: dict = None
83
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
84
    filter_list: Union[str, list] = None
85
86
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
87

lintangsutawika's avatar
lintangsutawika committed
88
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
89

90
    def __post_init__(self):
91

Lintang Sutawika's avatar
Lintang Sutawika committed
92
93
94
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
95
                    "passed `generation_kwargs`, but not using `output_type: greedy_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
96
                )
97
                assert self.output_type != "greedy_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
98
99
100
101
102
103
104

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
105
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
106
107
108
109
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
110
                    "until": None
111
112
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
113
114
115
                    "do_sample": False,
                    "temperature": 0.0,
                }
116

haileyschoelkopf's avatar
haileyschoelkopf committed
117
118
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

119
120
121
    def __getitem__(self, item):
        return getattr(self, item)

122
123
124
    def __setitem__(self, item, value):
        return setattr(self, item, value)

125
    def to_dict(self):
126
127
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
128
        Used for dumping results alongside full task configuration
129

haileyschoelkopf's avatar
haileyschoelkopf committed
130
131
132
133
134
135
136
137
138
139
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
140
141
142
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
143
        return cfg_dict
144

145
146
147
148
149
150
151
152
153
154
155
156

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
157

158
159
160
161
162
163
164
165
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
201
        self._config = TaskConfig(**config) if config else TaskConfig()
202
203
204

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
205
            for name, components in self._config.get(
206
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
207
            ):
208
209
210
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
211
        self.sampler = samplers.Sampler(
212
213
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
240
241
242
243
244
245
246
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

284
285
286
287
288
289
290
291
292
293
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
294
            eval_logger.warning(
295
                "has_training_docs and has_validation_docs are False"
296
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
297
            )
298
299
            return self.test_docs()

300
301
302
303
304
305
306
307
308
309
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

338
    def build_all_requests(self, limit=None, rank=None, world_size=None):
339
340
341
342
343
344
345
346
347
348
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

349
350
351
352
        eval_logger.info(
            f"Building contexts for task '{self._config.task}' on rank {rank}..."
        )

353
        instances = []
354
355
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
356
        ):
357
            # sample fewshot context #TODO: need to offset doc_id by rank now!
358
            fewshot_ctx = self.fewshot_context(
359
360
                doc,
                self._config.num_fewshot,
361
            )
362

haileyschoelkopf's avatar
haileyschoelkopf committed
363
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
364
365
366
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
367
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
368
            )
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
394
            The number of times each instance in a dataset is inferred on. Defaults to 1,
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
430
431
432
433
434
435
436
437
438
439
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

440
    @utils.positional_deprecated
441
    def fewshot_context(self, doc, num_fewshot):
442
443
444
445
446
447
448
449
450
451
452
453
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
454
455
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
456
        else:
lintangsutawika's avatar
lintangsutawika committed
457
458
459
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
460
461

        example = self.doc_to_text(doc)
462
463
464
465
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
466
467
468
        elif type(example) == int:
            choices = self.doc_to_choice(doc)
            return labeled_examples + choices[example]
469
470
471

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
472
473
474
475
476
477
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
478

479
    def dump_config(self):
480
        """Returns a dictionary representing the task's config.
481
482
483
484
485

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
486
        # (num_fewshot)
487
488
        return self._config.to_dict()

489
490
491

class ConfigurableTask(Task):

492
    VERSION = "Yaml"
493
    OUTPUT_TYPE = None
494
    CONFIG = None
495
496
497
498

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
499
        # Get pre-configured attributes
500
        self._config = self.CONFIG
501

502
503
        # Use new configurations if there was no preconfiguration
        if self._config is None:
504
            self._config = TaskConfig(**config)
505
506
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
507
            if config is not None:
508
                self._config.__dict__.update(config)
509

510
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
511
512
513
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
514
515

        if self._config.output_type is not None:
516
            assert self._config.output_type in ALL_OUTPUT_TYPES
517
518
            self.OUTPUT_TYPE = self._config.output_type

519
520
521
522
523
524
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

525
526
527
528
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
529

530
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
531
        if self._config.metric_list is None:
532
            # TODO: handle this in TaskConfig.__post_init__ ?
533
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
534
535
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
536
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
537
538
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
539
540
541
542
543
544
545
546
547
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
548
549
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
550

551
                if "aggregation" in metric_config:
552
                    agg_name = metric_config["aggregation"]
553
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
554
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
555
556
557
558
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
559
                else:
560
561

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
562
                    metric_agg = get_default_aggregation(metric_name)
563
                    eval_logger.warning(
564
565
566
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
567
                    )
568
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
569

570
571
572
573
574
575
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
576
577
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
578
                        f"higher_is_better={is_higher_better(metric_name)}"
579
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
580
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
581

582
        self.download(self._config.dataset_kwargs)
583
584
585
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
586
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
587
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
588
589
590
591
592
593
594
595
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
596
597
598
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
599
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
600
        else:
601
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
602
603

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
604
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
605
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
606
607
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
608
609
610
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
611
612
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
613
                list(self.fewshot_docs()), self, rnd=random.Random(1234)
614
            )
615

616
617
618
619
620
621
622
623
624
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

625
        # Test One Doc
626
627
628
        self.features = list(docs.features.keys())
        self.multiple_input = 0
        self.multiple_target = 0
629
630
        test_doc = docs[0]
        test_text = self.doc_to_text(test_doc)
631
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
632
633
634
635
636

        if self._config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
637
638
            else:
                num_choice = len(test_choice)
639

640
641
            if type(test_text) is int:
                self.multiple_input = num_choice
642

643
        if type(test_target) is list:
644
645
            self.multiple_target = len(test_target)

646
647
648
649
650
651
652
653
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
673
        if self.has_training_docs():
674
            if self._config.process_docs is not None:
675
676
677
                return self._config.process_docs(
                    self.dataset[self._config.training_split]
                )
678
679
680
            return self.dataset[self._config.training_split]

    def validation_docs(self):
681
        if self.has_validation_docs():
682
            if self._config.process_docs is not None:
683
684
685
                return self._config.process_docs(
                    self.dataset[self._config.validation_split]
                )
686
687
688
            return self.dataset[self._config.validation_split]

    def test_docs(self):
689
        if self.has_test_docs():
690
            if self._config.process_docs is not None:
691
                return self._config.process_docs(self.dataset[self._config.test_split])
692
693
            return self.dataset[self._config.test_split]

694
    def fewshot_docs(self):
695
        if self._config.fewshot_split is not None:
696
            return self.dataset[self._config.fewshot_split]
697
698
699
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
700
                    f"Task '{self._config.task}': "
701
702
703
704
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
705

706
707
708
709
710
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
711
712
713
714
715
716
            if self._config.doc_to_decontamination_query in self.features:
                return doc[self._config.doc_to_decontamination_query]
            else:
                return ast.literal_eval(
                    utils.apply_template(self._config.doc_to_decontamination_query, doc)
                )
717

718
719
720
721
722
723
724
725
726
727
728
729
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
730
731
732

        if self.prompt is not None:
            doc_to_text = self.prompt
733
734
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
735

736
737
738
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
739
            if doc_to_text in self.features:
740
741
742
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
743
744
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
745
746
747
748
749
                text_string = utils.apply_template(doc_to_text, doc)
                if text_string.isdigit():
                    return ast.literal_eval(text_string)
                else:
                    return text_string
750
        elif callable(doc_to_text):
751
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
752
        # Used when applying a Promptsource template
753
        elif hasattr(doc_to_text, "apply"):
754
            return doc_to_text.apply(doc)[0]
755
        else:
756
            print(type(doc_to_text))
757
            raise TypeError
758
759

    def doc_to_target(self, doc):
760
761
762

        if self.prompt is not None:
            doc_to_target = self.prompt
763
764
765
        else:
            doc_to_target = self._config.doc_to_target

766
767
768
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
769
            if doc_to_target in self.features:
770
771
772
773
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
774
            else:
lintangsutawika's avatar
lintangsutawika committed
775
776
777
778
779
                target_string = utils.apply_template(doc_to_target, doc)
                if target_string.isdigit():
                    return ast.literal_eval(target_string)
                else:
                    return target_string
780
        elif callable(doc_to_target):
781
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
782
        # Used when applying a Promptsource template
783
784
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
785
786
        else:
            raise TypeError
787
788
789
790
791

    def doc_to_choice(self, doc):

        if self.prompt is not None:
            doc_to_choice = self.prompt
lintangsutawika's avatar
lintangsutawika committed
792
        elif self._config.doc_to_choice is None:
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
            doc_to_choice = self._config.doc_to_choice

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
809

810
    def gold_alias(self, doc):
811
812
813
814
815
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
816
        if self._config.gold_alias is not None:
817
818
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
819
            return self.doc_to_target(doc)
820
821
822
823
824
825
826
827
828
829

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

830
831
    def construct_requests(self, doc, ctx, **kwargs):

832
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
833
            arguments = (ctx, self.doc_to_target(doc))
834
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
835
            arguments = (self.doc_to_target(doc),)
836
        elif self.OUTPUT_TYPE == "multiple_choice":
837
838
839
840

            choices = self.doc_to_choice(doc)
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
841
                cont = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
842
                arguments = [(ctx, " {}".format(cont)) for ctx in choices]
843
            else:
844
                # Otherwise they are placed in the continuation
lintangsutawika's avatar
lintangsutawika committed
845
                arguments = [(ctx, " {}".format(cont)) for cont in choices]
846

847
            request_list = [
848
849
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
850
                    doc=doc,
851
                    arguments=arg,
852
                    idx=i,
853
854
                    **kwargs,
                )
855
                for i, arg in enumerate(arguments)
856
            ]
857
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
858
            if "acc_mutual_info" in self._metric_fn_list.keys():
859
860
861
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
862
                # here mutual info refers to calculating
863
864
865
866
867
868
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
869
                            doc=doc,
870
                            arguments=("", "{}".format(choice)),
871
872
873
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
874
                        for i, choice in enumerate(choices)
875
876
877
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
878

879
        elif self.OUTPUT_TYPE == "greedy_until":
880
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
881
882

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
883
884
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
885
886
887

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
888
889
890
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

891
        result_dict = {}
892
        use_metric = list(self._metric_fn_list.keys())
893
894
895
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
896
897
898
899
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
900
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
901
            (loglikelihood,) = results
902
903
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
904
            return {
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
920
            }
921
        elif self.OUTPUT_TYPE == "multiple_choice":
922
923

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
924

925
            # retrieve choices in List[str] form, to compute choice lengths, etc.
926
            choices = self.doc_to_choice(doc)
927
928
            completion_len = np.array([float(len(i)) for i in choices])

929
930
            if (
                2 * len(choices) == len(lls)
931
                and "acc_mutual_info" in self._metric_fn_list.keys()
932
933
934
935
936
937
938
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
939

940
941
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
942

943
944
            if self.multiple_input:
                gold = self.doc_to_text(doc)
945
            else:
946
                gold = self.doc_to_target(doc)
947
948
                if type(gold) is str:
                    gold = choices.index(gold)
lintangsutawika's avatar
lintangsutawika committed
949

950
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
951
952
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
953
                exact_match = int(any([is_greedy[i] for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
954
955
956
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
957
958
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
                exact_match = int(is_greedy[gold])
959
960

            result_dict = {
961
                **({"acc": acc} if "acc" in use_metric else {}),
962
963
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
964
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
965
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
966
967
            }

968
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
969
970
971
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
972
973
974
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

975
976
        elif self.OUTPUT_TYPE == "greedy_until":

977
            gold = self.doc_to_target(doc)
978

979
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
                    for gold_option in gold:
                        res = self._metric_fn_list[key](
                            references=[gold_option],
                            predictions=[result],
                            **self._metric_fn_kwargs[key],
                        )
                        if isinstance(res, dict):
                            # TODO: this handles the case where HF evaluate returns a dict.
                            res = res[key]
                        scores.append(res)
                    if any(scores):
                        result = 1.0
                    else:
                        result = 0.0
                else:
                    result = self._metric_fn_list[key](
                        references=[gold],
                        predictions=[result],
                        **self._metric_fn_kwargs[key],
                    )
1005

haileyschoelkopf's avatar
haileyschoelkopf committed
1006
1007
1008
1009
                if isinstance(result, dict):
                    result_dict.update(result)
                else:
                    result_dict[key] = result
1010
        else:
lintangsutawika's avatar
lintangsutawika committed
1011
1012
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1013
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1014
            )
1015
1016
1017
1018
1019
1020
1021

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1022
        return self._higher_is_better
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
1033
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1034
1035
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1036
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1037
                doc=doc,
1038
                arguments=(ctx, " {}".format(choice)),
1039
                idx=i,
1040
1041
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1042
1043
            for i, choice in enumerate(doc["choices"])
        ]
1044
1045

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
1046
1047
1048
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1073
class PerplexityTask(Task):
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

1084
    def fewshot_context(self, doc, num_fewshot):
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1110
1111
1112
1113
1114
1115
1116
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1117
1118
1119

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1120
1121
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))