utils.py 18.3 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
11
from dataclasses import asdict, is_dataclass
12
from itertools import islice
13
from pathlib import Path
Baber Abbasi's avatar
Baber Abbasi committed
14
from typing import Any, Callable, Generator, List, Optional, Tuple
15

Lintang Sutawika's avatar
Lintang Sutawika committed
16
import numpy as np
17
import yaml
18
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
19

lintangsutawika's avatar
lintangsutawika committed
20

21
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
22

23
24
25
26
27
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
28

Lintang Sutawika's avatar
Lintang Sutawika committed
29
30
def setup_logging(verbosity=logging.INFO):
    # Configure the root logger
Baber Abbasi's avatar
Baber Abbasi committed
31
32
33
34
35
36
37
38
39
40
41
    class CustomFormatter(logging.Formatter):
        def format(self, record):
            if record.name.startswith("lm_eval."):
                record.name = record.name[len("lm_eval.") :]
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Lintang Sutawika's avatar
Lintang Sutawika committed
42
43
44
45
46
47
48
49
50
51
52
    log_level = os.environ.get("LOGLEVEL", verbosity) or verbosity

    level_map = {
        "DEBUG": logging.DEBUG,
        "INFO": logging.INFO,
        "WARNING": logging.WARNING,
        "ERROR": logging.ERROR,
        "CRITICAL": logging.CRITICAL,
    }

    log_level = level_map.get(str(log_level).upper(), logging.INFO)
Baber Abbasi's avatar
Baber Abbasi committed
53

Lintang Sutawika's avatar
Lintang Sutawika committed
54
    if not logging.root.handlers:
Baber Abbasi's avatar
Baber Abbasi committed
55
56
57
58
59
60
61
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)

        root_logger = logging.getLogger()
        root_logger.addHandler(handler)
        root_logger.setLevel(log_level)

Lintang Sutawika's avatar
Lintang Sutawika committed
62
63
64
65
66
67
68
69
        if log_level == logging.DEBUG:
            third_party_loggers = ["urllib3", "filelock", "fsspec"]
            for logger_name in third_party_loggers:
                logging.getLogger(logger_name).setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(log_level)


70
71
72
73
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


74
75
76
77
78
79
80
81
82
83
84
85
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
86
87
88
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
89
90
91
92
93
94
95
96

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
97
98
99
100
101
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
102
103
104
105
106
107
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
108
109


110
111
112
113
114
115
116
117
118
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


119
120
121
122
123
124
125
126
127
128
129
130
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber Abbasi's avatar
Baber Abbasi committed
131
def simple_parse_args_string(args_string: Optional[str]) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
132
133
134
135
136
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
137
138
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
139
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
140
141
    if not args_string:
        return {}
142
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
143
    args_dict = {
144
145
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
146
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
147
    return args_dict
Leo Gao's avatar
Leo Gao committed
148

Fabrizio Milo's avatar
Fabrizio Milo committed
149

Leo Gao's avatar
Leo Gao committed
150
151
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
152
        yield from iter
Leo Gao's avatar
Leo Gao committed
153
154


155
156
157
158
159
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
160

161
162
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
163

gakada's avatar
gakada committed
164
165
166
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
167
    if isinstance(patterns, str):
168
169
        patterns = [patterns]

gakada's avatar
gakada committed
170
171
172
173
174
175
176
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
177
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
178
179
180
181
182
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber Abbasi's avatar
Baber Abbasi committed
183
def general_detokenize(string) -> str:
Leo Gao's avatar
Leo Gao committed
184
185
186
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
187
188
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
189
    string = re.sub(r" (['.,])", r"\1", string)
190
191
192
    return string


193
194
195
196
197
198
199
200
201
202
203
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
204
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


def get_latest_filename(filenames: List[str]) -> str:
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


def get_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


def get_sample_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


242
243
244
def get_rolling_token_windows(
    token_list: List[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[Tuple[List[int], List[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
271
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
272
273
274
275
276
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
277

Jason Phang's avatar
Jason Phang committed
278
        yield (
lintangsutawika's avatar
lintangsutawika committed
279
280
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
281
282
283
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
284

285
286
287
def make_disjoint_window(
    pair: Tuple[List[int], List[int]],
) -> Tuple[List[int], List[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
288
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
289
    a, b = pair
290
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
291

Jason Phang's avatar
Jason Phang committed
292

293
294
295
296
297
298
299
300
301
302
303
304
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


305
class Reorderer:
baberabb's avatar
baberabb committed
306
307
308
309
310
311
312
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
313
314
315
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
316
317
318
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
319
320
321
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
322

323
    def get_reordered(self):
baberabb's avatar
baberabb committed
324
325
326
327
328
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
329
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
330

331
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
332
333
334
335
336
337
338
339
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
340
341
342
343
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
344
            for ind in inds:
345
346
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
347

348
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
349

350
351
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
352

Lintang Sutawika's avatar
Lintang Sutawika committed
353
def make_table(result_dict, column: str = "results", sort_results: bool = False):
354
    """Generate table of results."""
355
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
356

lintangsutawika's avatar
lintangsutawika committed
357
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
358
359
360
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
361

lintangsutawika's avatar
lintangsutawika committed
362
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
363
        column_name,
lintangsutawika's avatar
lintangsutawika committed
364
365
        "Version",
        "Filter",
366
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
367
        "Metric",
368
        "",
lintangsutawika's avatar
lintangsutawika committed
369
370
371
372
        "Value",
        "",
        "Stderr",
    ]
373

lintangsutawika's avatar
lintangsutawika committed
374
375
376
377
378
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

379
380
    values = []

381
382
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
383
384
385
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
386
387
388
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
389
390
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
391
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
392
393
394
395

        if "alias" in dic:
            k = dic.pop("alias")

396
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
397
        metric_items = sorted(metric_items)
398
399

        for (mf), v in metric_items:
400
            m, _, f = mf.partition(",")
401
402
403
            if m.endswith("_stderr"):
                continue

404
405
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

Lintang Sutawika's avatar
Lintang Sutawika committed
406
407
            v = "%.4f" % v if isinstance(v, float) else v

408
409
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Lintang Sutawika's avatar
Lintang Sutawika committed
410
                se = "   N/A" if se == "N/A" else "%.4f" % se
Lintang Sutawika's avatar
Lintang Sutawika committed
411
                values.append([k, version, f, n, m, hib, v, "±", se])
412
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
413
                values.append([k, version, f, n, m, hib, v, "", ""])
414
415
416
417
418
419
420
421
422
423
424
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


425
426
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
427
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
428
429
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
430

431
432
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
433
434
435
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
436
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
437
438
                "lm-evaluation-harness!"
            )
439
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
440

441
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
442

Fabrizio Milo's avatar
Fabrizio Milo committed
443

444
445
446
447
def ignore_constructor(loader, node):
    return node


448
def import_function(loader: yaml.Loader, node, yaml_path: Path):
lintangsutawika's avatar
lintangsutawika committed
449
450
    function_name = loader.construct_scalar(node)

lintangsutawika's avatar
lintangsutawika committed
451
    *module_name, function_name = function_name.split(".")
452
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
453
        module_name = ".".join(module_name)
454
    module_path = yaml_path.parent / f"{module_name}.py"
lintangsutawika's avatar
lintangsutawika committed
455

456
457
458
459
    spec = importlib.util.spec_from_file_location(module_name, module_path.as_posix())

    if spec is None:
        raise ImportError(f"Could not import module {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
460
    module = importlib.util.module_from_spec(spec)
461
462
463

    if spec.loader is None:
        raise ImportError(f"Module loader is None, {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
464
465
466
467
468
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
469

Baber's avatar
Baber committed
470
471
472
473
474
475
476
477
478
479
480
def load_yaml_config(
    yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"
) -> dict:
    # Convert yaml_path to Path object if it's a string
    if yaml_path is not None:
        yaml_path = Path(yaml_path)

    # Convert yaml_dir to Path object if it's a string
    if yaml_dir is not None:
        yaml_dir = Path(yaml_dir)

481
482
483
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
484
485
486
        if yaml_path is None:
            raise ValueError("yaml_path must be provided if mode is 'full'.")
        # Attach yaml_path to the import function so that it can be used later
Baber's avatar
Baber committed
487
        constructor_fn = functools.partial(import_function, yaml_path=yaml_path)
lintangsutawika's avatar
lintangsutawika committed
488

489
    loader = yaml.CLoader if yaml.__with_libyaml__ else yaml.FullLoader
490
    # Add the import_function constructor to the YAML loader
491
    yaml.add_constructor("!function", constructor_fn, Loader=loader)
492
493
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
494
            yaml_config = yaml.load(file, Loader=loader)
lintangsutawika's avatar
lintangsutawika committed
495

Baber's avatar
Baber committed
496
497
    if yaml_dir is None and yaml_path is not None:
        yaml_dir = yaml_path.parent
498
499
500
501
502
503
504

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

505
        if isinstance(include_path, str):
506
507
508
509
510
511
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
Baber's avatar
Baber committed
512
513
            # Convert to Path object
            path = Path(path)
514
515
516
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
Baber's avatar
Baber committed
517
518
            if not path.is_file():
                path = yaml_dir / path
519
520

            try:
521
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
522
523
524
525
526
527
528
529
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
530
531


Ethan Smith's avatar
Ethan Smith committed
532
def regex_replace(string, pattern, repl, count: int = 0):
533
534
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
535

lintangsutawika's avatar
lintangsutawika committed
536

537
538
539
env = Environment(
    loader=BaseLoader, undefined=StrictUndefined, keep_trailing_newline=True
)
540
env.filters["regex_replace"] = regex_replace
541
542


baberabb's avatar
baberabb committed
543
def apply_template(template: str, doc: dict) -> str:
544
545
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
546
547


548
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
549
550
551
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
552
553
554
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
555
556
557
558
559
560
561
562
563
564


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593


def convert_pil_to_hash(value):
    from io import BytesIO

    img_bytes = BytesIO()
    value.save(img_bytes, format="PNG")
    return hashlib.sha256(str(img_bytes).encode()).hexdigest()


def convert_bytes_to_hash(value):
    return hashlib.sha256(str(value).encode()).hexdigest()


def hash_dict_images(data_dict):
    """
    Create a deep copy of `data_dict` where all bytes and PIL.Image.Image values
    are replaced by their respective hashes using the provided converter functions.

    Parameters:
        data_dict (dict): The input dictionary with arbitrary nesting of dicts and lists.

    Returns:
        dict: A new dictionary with the same structure as `data_dict`, but with all
              bytes and PIL.Image.Image objects replaced by their hashes.
    """

    def _process_value(value):
        # Bytes -> hash
Baber Abbasi's avatar
Baber Abbasi committed
594
595
        from PIL import Image

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        if isinstance(value, (bytes, bytearray)):
            return convert_bytes_to_hash(value)
        # PIL Image -> hash
        if isinstance(value, Image.Image):
            return convert_pil_to_hash(value)
        # Nested dictionary -> recurse
        if isinstance(value, dict):
            return {k: _process_value(v) for k, v in value.items()}
        # List or tuple -> recurse, preserving type
        if isinstance(value, list):
            return [_process_value(v) for v in value]
        if isinstance(value, tuple):
            return tuple(_process_value(v) for v in value)
        # Other types remain unchanged
        return value

    # Ensure the top-level is a dict
    if not isinstance(data_dict, dict):
        raise TypeError("Input must be a dictionary")

Baber Abbasi's avatar
Baber Abbasi committed
616
617
618
619
620
    return (
        {key: _process_value(val) for key, val in data_dict.items()}
        if importlib.util.find_spec("PIL")
        else data_dict
    )