utils.py 18.5 KB
Newer Older
1
2
import collections
import fnmatch
3
import hashlib
4
import importlib.util
5
import inspect
6
import json
7
8
9
import logging
import os
import re
Baber's avatar
Baber committed
10
from collections.abc import Generator
11
from dataclasses import asdict, is_dataclass
Baber's avatar
Baber committed
12
from functools import lru_cache, partial, wraps
13
from itertools import islice
14
from pathlib import Path
Baber's avatar
Baber committed
15
from typing import Any, Callable, Optional
16

Lintang Sutawika's avatar
Lintang Sutawika committed
17
import numpy as np
18
import yaml
19
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
20

lintangsutawika's avatar
lintangsutawika committed
21

22
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
23

24
25
26
27
28
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def wrap_text(string: str, width: int = 140, **kwargs) -> Optional[str]:
    """
    Wraps the given string to the specified width.
    """
    import textwrap

    return textwrap.fill(
        inspect.cleandoc(string),
        width=width,
        initial_indent="",
        subsequent_indent=" " * 8,
        break_long_words=False,
        break_on_hyphens=False,
        **kwargs,
    )


Lintang Sutawika's avatar
Lintang Sutawika committed
47
48
def setup_logging(verbosity=logging.INFO):
    # Configure the root logger
Baber Abbasi's avatar
Baber Abbasi committed
49
50
51
52
53
54
55
56
57
58
59
    class CustomFormatter(logging.Formatter):
        def format(self, record):
            if record.name.startswith("lm_eval."):
                record.name = record.name[len("lm_eval.") :]
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Lintang Sutawika's avatar
Lintang Sutawika committed
60
61
62
63
64
65
66
67
68
69
70
    log_level = os.environ.get("LOGLEVEL", verbosity) or verbosity

    level_map = {
        "DEBUG": logging.DEBUG,
        "INFO": logging.INFO,
        "WARNING": logging.WARNING,
        "ERROR": logging.ERROR,
        "CRITICAL": logging.CRITICAL,
    }

    log_level = level_map.get(str(log_level).upper(), logging.INFO)
Baber Abbasi's avatar
Baber Abbasi committed
71

Lintang Sutawika's avatar
Lintang Sutawika committed
72
    if not logging.root.handlers:
Baber Abbasi's avatar
Baber Abbasi committed
73
74
75
76
77
78
79
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)

        root_logger = logging.getLogger()
        root_logger.addHandler(handler)
        root_logger.setLevel(log_level)

Lintang Sutawika's avatar
Lintang Sutawika committed
80
81
82
83
84
85
86
87
        if log_level == logging.DEBUG:
            third_party_loggers = ["urllib3", "filelock", "fsspec"]
            for logger_name in third_party_loggers:
                logging.getLogger(logger_name).setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(log_level)


88
89
90
91
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


92
93
94
95
96
97
98
99
100
101
102
103
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
104
105
106
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
107
108
109
110
111

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

Baber's avatar
Baber committed
112
    return re.split(r"(?<!\\)" + sep_char, text, maxsplit=maxsplit)
113
114


haileyschoelkopf's avatar
haileyschoelkopf committed
115
116
117
118
119
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
120
121
122
123
124
125
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
126
127


128
def handle_non_serializable(o):
Baber's avatar
Baber committed
129
    if isinstance(o, np.integer):
130
131
132
133
134
135
136
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


137
138
139
140
141
142
143
144
145
146
147
148
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber Abbasi's avatar
Baber Abbasi committed
149
def simple_parse_args_string(args_string: Optional[str]) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
150
151
152
153
154
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
155
156
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
157
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
158
159
    if not args_string:
        return {}
160
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
161
    args_dict = {
162
163
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
164
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
165
    return args_dict
Leo Gao's avatar
Leo Gao committed
166

Fabrizio Milo's avatar
Fabrizio Milo committed
167

Leo Gao's avatar
Leo Gao committed
168
169
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
170
        yield from iter
Leo Gao's avatar
Leo Gao committed
171
172


173
174
175
176
177
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
178

179
180
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
181

gakada's avatar
gakada committed
182
183
184
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
185
    if isinstance(patterns, str):
186
187
        patterns = [patterns]

gakada's avatar
gakada committed
188
189
190
191
192
193
194
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
195
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
196
197
198
199
200
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber Abbasi's avatar
Baber Abbasi committed
201
def general_detokenize(string) -> str:
Leo Gao's avatar
Leo Gao committed
202
203
204
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
205
206
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
207
    string = re.sub(r" (['.,])", r"\1", string)
208
209
210
    return string


211
212
213
214
215
216
217
218
219
220
221
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
222
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


Baber's avatar
Baber committed
239
def get_latest_filename(filenames: list[str]) -> str:
240
241
242
243
244
245
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


Baber's avatar
Baber committed
246
def get_results_filenames(filenames: list[str]) -> list[str]:
247
248
249
250
251
252
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


Baber's avatar
Baber committed
253
def get_sample_results_filenames(filenames: list[str]) -> list[str]:
254
255
256
257
258
259
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


260
def get_rolling_token_windows(
Baber's avatar
Baber committed
261
262
    token_list: list[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[tuple[list[int], list[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
289
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
290
291
292
293
294
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
295

Jason Phang's avatar
Jason Phang committed
296
        yield (
lintangsutawika's avatar
lintangsutawika committed
297
298
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
299
300
301
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
302

303
def make_disjoint_window(
Baber's avatar
Baber committed
304
305
    pair: tuple[list[int], list[int]],
) -> tuple[list[int], list[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
306
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
307
    a, b = pair
308
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
309

Jason Phang's avatar
Jason Phang committed
310

311
312
313
314
315
316
317
318
319
320
321
322
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


323
class Reorderer:
Baber's avatar
Baber committed
324
    def __init__(self, arr: list[Any], fn: Callable) -> None:
baberabb's avatar
baberabb committed
325
326
327
328
329
330
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
331
332
333
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
334
335
336
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
337
338
339
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
340

341
    def get_reordered(self):
baberabb's avatar
baberabb committed
342
343
344
345
346
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
347
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
348

349
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
350
351
352
353
354
355
356
357
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
358
359
360
361
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
362
            for ind in inds:
363
364
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
365

366
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
367

368
369
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
370

Lintang Sutawika's avatar
Lintang Sutawika committed
371
def make_table(result_dict, column: str = "results", sort_results: bool = False):
372
    """Generate table of results."""
373
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
374

lintangsutawika's avatar
lintangsutawika committed
375
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
376
377
378
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
379

lintangsutawika's avatar
lintangsutawika committed
380
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
381
        column_name,
lintangsutawika's avatar
lintangsutawika committed
382
383
        "Version",
        "Filter",
384
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
385
        "Metric",
386
        "",
lintangsutawika's avatar
lintangsutawika committed
387
388
389
390
        "Value",
        "",
        "Stderr",
    ]
391

lintangsutawika's avatar
lintangsutawika committed
392
393
394
395
396
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

397
398
    values = []

399
400
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
401
402
403
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
404
405
406
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
407
408
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
Baber's avatar
Baber committed
409
410
        # TODO: fix this
        # higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
411
412
413
414

        if "alias" in dic:
            k = dic.pop("alias")

415
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
416
        metric_items = sorted(metric_items)
417
418

        for (mf), v in metric_items:
419
            m, _, f = mf.partition(",")
420
421
422
            if m.endswith("_stderr"):
                continue

Baber's avatar
Baber committed
423
424
425
            # hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")
            # TODO: fix
            hib = "↑"
426

Baber's avatar
Baber committed
427
            v = f"{v:.4f}" if isinstance(v, float) else v
Lintang Sutawika's avatar
Lintang Sutawika committed
428

429
430
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Baber's avatar
Baber committed
431
                se = "   N/A" if se == "N/A" else f"{se:.4f}"
Lintang Sutawika's avatar
Lintang Sutawika committed
432
                values.append([k, version, f, n, m, hib, v, "±", se])
433
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
434
                values.append([k, version, f, n, m, hib, v, "", ""])
435
436
437
438
439
440
441
442
443
444
445
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


446
447
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
448
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
449
450
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
451

Baber's avatar
Baber committed
452
453
    wraps(fn)

454
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
455
456
457
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
458
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
459
460
                "lm-evaluation-harness!"
            )
461
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
462

463
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
464

Fabrizio Milo's avatar
Fabrizio Milo committed
465

466
467
468
469
def ignore_constructor(loader, node):
    return node


470
def import_function(loader: yaml.Loader, node, yaml_path: Path):
lintangsutawika's avatar
lintangsutawika committed
471
472
    function_name = loader.construct_scalar(node)

lintangsutawika's avatar
lintangsutawika committed
473
    *module_name, function_name = function_name.split(".")
474
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
475
        module_name = ".".join(module_name)
476
    module_path = yaml_path.parent / f"{module_name}.py"
lintangsutawika's avatar
lintangsutawika committed
477

478
479
480
481
    spec = importlib.util.spec_from_file_location(module_name, module_path.as_posix())

    if spec is None:
        raise ImportError(f"Could not import module {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
482
    module = importlib.util.module_from_spec(spec)
483
484
485

    if spec.loader is None:
        raise ImportError(f"Module loader is None, {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
486
487
488
489
490
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
491

492
493
494
495
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
496
497
498
        if yaml_path is None:
            raise ValueError("yaml_path must be provided if mode is 'full'.")
        # Attach yaml_path to the import function so that it can be used later
Baber's avatar
Baber committed
499
        constructor_fn = partial(import_function, yaml_path=Path(yaml_path))
lintangsutawika's avatar
lintangsutawika committed
500

501
    loader = yaml.CLoader if yaml.__with_libyaml__ else yaml.FullLoader
502
    # Add the import_function constructor to the YAML loader
503
    yaml.add_constructor("!function", constructor_fn, Loader=loader)
504
505
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
506
            yaml_config = yaml.load(file, Loader=loader)
lintangsutawika's avatar
lintangsutawika committed
507

lintangsutawika's avatar
lintangsutawika committed
508
509
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
510
511
512
513
514
515
516

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

517
        if isinstance(include_path, str):
518
519
520
521
522
523
524
525
526
527
528
529
530
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
531
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
532
533
534
535
536
537
538
539
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
540
541


Ethan Smith's avatar
Ethan Smith committed
542
def regex_replace(string, pattern, repl, count: int = 0):
543
544
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
545

lintangsutawika's avatar
lintangsutawika committed
546

547
env = Environment(
Baber's avatar
Baber committed
548
    loader=BaseLoader(), undefined=StrictUndefined, keep_trailing_newline=True
549
)
550
env.filters["regex_replace"] = regex_replace
551
552


Baber's avatar
Baber committed
553
554
555
556
557
@lru_cache(maxsize=128)
def _compile(raw: str):
    return env.from_string(raw)


baberabb's avatar
baberabb committed
558
def apply_template(template: str, doc: dict) -> str:
Baber's avatar
Baber committed
559
    rtemplate = _compile(template)
560
    return rtemplate.render(**doc)
561
562


563
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
564
565
566
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
567
568
569
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
570
571
572
573
574
575
576
577
578
579


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608


def convert_pil_to_hash(value):
    from io import BytesIO

    img_bytes = BytesIO()
    value.save(img_bytes, format="PNG")
    return hashlib.sha256(str(img_bytes).encode()).hexdigest()


def convert_bytes_to_hash(value):
    return hashlib.sha256(str(value).encode()).hexdigest()


def hash_dict_images(data_dict):
    """
    Create a deep copy of `data_dict` where all bytes and PIL.Image.Image values
    are replaced by their respective hashes using the provided converter functions.

    Parameters:
        data_dict (dict): The input dictionary with arbitrary nesting of dicts and lists.

    Returns:
        dict: A new dictionary with the same structure as `data_dict`, but with all
              bytes and PIL.Image.Image objects replaced by their hashes.
    """

    def _process_value(value):
        # Bytes -> hash
Baber Abbasi's avatar
Baber Abbasi committed
609
610
        from PIL import Image

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
        if isinstance(value, (bytes, bytearray)):
            return convert_bytes_to_hash(value)
        # PIL Image -> hash
        if isinstance(value, Image.Image):
            return convert_pil_to_hash(value)
        # Nested dictionary -> recurse
        if isinstance(value, dict):
            return {k: _process_value(v) for k, v in value.items()}
        # List or tuple -> recurse, preserving type
        if isinstance(value, list):
            return [_process_value(v) for v in value]
        if isinstance(value, tuple):
            return tuple(_process_value(v) for v in value)
        # Other types remain unchanged
        return value

    # Ensure the top-level is a dict
    if not isinstance(data_dict, dict):
        raise TypeError("Input must be a dictionary")

Baber Abbasi's avatar
Baber Abbasi committed
631
632
633
634
635
    return (
        {key: _process_value(val) for key, val in data_dict.items()}
        if importlib.util.find_spec("PIL")
        else data_dict
    )