utils.py 18.3 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

3
4
import collections
import fnmatch
5
import hashlib
6
import importlib.util
7
import inspect
8
import json
9
10
11
import logging
import os
import re
Baber's avatar
Baber committed
12
from collections.abc import Generator
13
from dataclasses import asdict, is_dataclass
Baber's avatar
Baber committed
14
from functools import lru_cache, partial, wraps
15
from itertools import islice
16
from pathlib import Path
Baber's avatar
Baber committed
17
from typing import Any, Callable
18

Lintang Sutawika's avatar
Lintang Sutawika committed
19
import numpy as np
20
import yaml
Baber's avatar
Baber committed
21
from jinja2 import BaseLoader, Environment, StrictUndefined, Template
sdtblck's avatar
sdtblck committed
22

lintangsutawika's avatar
lintangsutawika committed
23

24
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
25

26
27
28
29
30
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
31

Lintang Sutawika's avatar
Lintang Sutawika committed
32
33
def setup_logging(verbosity=logging.INFO):
    # Configure the root logger
Baber Abbasi's avatar
Baber Abbasi committed
34
35
36
37
38
39
40
41
42
43
44
    class CustomFormatter(logging.Formatter):
        def format(self, record):
            if record.name.startswith("lm_eval."):
                record.name = record.name[len("lm_eval.") :]
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Lintang Sutawika's avatar
Lintang Sutawika committed
45
46
47
48
49
50
51
52
53
54
55
    log_level = os.environ.get("LOGLEVEL", verbosity) or verbosity

    level_map = {
        "DEBUG": logging.DEBUG,
        "INFO": logging.INFO,
        "WARNING": logging.WARNING,
        "ERROR": logging.ERROR,
        "CRITICAL": logging.CRITICAL,
    }

    log_level = level_map.get(str(log_level).upper(), logging.INFO)
Baber Abbasi's avatar
Baber Abbasi committed
56

Lintang Sutawika's avatar
Lintang Sutawika committed
57
    if not logging.root.handlers:
Baber Abbasi's avatar
Baber Abbasi committed
58
59
60
61
62
63
64
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)

        root_logger = logging.getLogger()
        root_logger.addHandler(handler)
        root_logger.setLevel(log_level)

Lintang Sutawika's avatar
Lintang Sutawika committed
65
66
67
68
69
70
71
72
        if log_level == logging.DEBUG:
            third_party_loggers = ["urllib3", "filelock", "fsspec"]
            for logger_name in third_party_loggers:
                logging.getLogger(logger_name).setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(log_level)


73
74
75
76
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


77
78
79
80
81
82
83
84
85
86
87
88
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
89
90
91
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
92
93
94
95
96

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

Baber's avatar
Baber committed
97
    return re.split(r"(?<!\\)" + sep_char, text, maxsplit=maxsplit)
98
99


haileyschoelkopf's avatar
haileyschoelkopf committed
100
101
102
103
104
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
105
106
107
108
109
110
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
111
112


113
def handle_non_serializable(o):
Baber's avatar
Baber committed
114
    if isinstance(o, np.integer):
115
116
117
118
119
120
121
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


122
123
124
125
126
127
128
129
130
131
132
133
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber's avatar
Baber committed
134
def simple_parse_args_string(args_string: str | None) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
135
136
137
138
139
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
140
141
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
142
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
143
144
    if not args_string:
        return {}
145
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
146
    args_dict = {
147
148
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
149
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
150
    return args_dict
Leo Gao's avatar
Leo Gao committed
151

Fabrizio Milo's avatar
Fabrizio Milo committed
152

Leo Gao's avatar
Leo Gao committed
153
154
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
155
        yield from iter
Leo Gao's avatar
Leo Gao committed
156
157


158
159
160
161
162
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
163

164
165
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
166

gakada's avatar
gakada committed
167
168
# Returns a list containing all values of the source_list that
# match at least one of the patterns
Baber's avatar
Baber committed
169
def pattern_match(patterns: list[str], source_list: list[str]) -> list[str]:
170
    if isinstance(patterns, str):
171
172
        patterns = [patterns]

gakada's avatar
gakada committed
173
174
175
176
177
178
179
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
180
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
181
182
183
184
185
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber's avatar
Baber committed
186
def general_detokenize(string: str) -> str:
Leo Gao's avatar
Leo Gao committed
187
188
189
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
190
191
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
192
    string = re.sub(r" (['.,])", r"\1", string)
193
194
195
    return string


196
197
198
199
200
201
202
203
204
205
206
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
207
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
208
209
210
211
212
213


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
Baber's avatar
Baber committed
214
    return re.sub(r"[\"<>:/|\\?*\[\]]+", "__", model_name)
215
216
217
218
219
220
221
222
223


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


Baber's avatar
Baber committed
224
def get_latest_filename(filenames: list[str]) -> str:
225
226
227
228
229
230
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


Baber's avatar
Baber committed
231
def get_results_filenames(filenames: list[str]) -> list[str]:
232
233
234
235
236
237
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


Baber's avatar
Baber committed
238
def get_sample_results_filenames(filenames: list[str]) -> list[str]:
239
240
241
242
243
244
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


245
def get_rolling_token_windows(
Baber's avatar
Baber committed
246
247
    token_list: list[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[tuple[list[int], list[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
274
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
275
276
277
278
279
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
280

Jason Phang's avatar
Jason Phang committed
281
        yield (
lintangsutawika's avatar
lintangsutawika committed
282
283
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
284
285
286
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
287

288
def make_disjoint_window(
Baber's avatar
Baber committed
289
290
    pair: tuple[list[int], list[int]],
) -> tuple[list[int], list[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
291
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
292
    a, b = pair
293
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
294

Jason Phang's avatar
Jason Phang committed
295

296
297
298
299
300
301
302
303
304
305
306
307
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


308
class Reorderer:
Baber's avatar
Baber committed
309
    def __init__(self, arr: list[Any], fn: Callable) -> None:
baberabb's avatar
baberabb committed
310
311
312
313
314
315
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
316
317
318
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
319
320
321
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
322
323
324
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
325

326
    def get_reordered(self):
baberabb's avatar
baberabb committed
327
328
329
330
331
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
332
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
333

334
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
335
336
337
338
339
340
341
342
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
343
344
345
346
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
347
            for ind in inds:
348
349
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
350

351
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
352

353
354
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
355

Lintang Sutawika's avatar
Lintang Sutawika committed
356
def make_table(result_dict, column: str = "results", sort_results: bool = False):
357
    """Generate table of results."""
358
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
359

lintangsutawika's avatar
lintangsutawika committed
360
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
361
362
363
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
364

lintangsutawika's avatar
lintangsutawika committed
365
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
366
        column_name,
lintangsutawika's avatar
lintangsutawika committed
367
368
        "Version",
        "Filter",
369
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
370
        "Metric",
371
        "",
lintangsutawika's avatar
lintangsutawika committed
372
373
374
375
        "Value",
        "",
        "Stderr",
    ]
376

lintangsutawika's avatar
lintangsutawika committed
377
378
379
380
381
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

382
383
    values = []

384
385
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
386
387
388
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
389
390
391
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
392
393
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
Baber's avatar
Baber committed
394
395
        # TODO: fix this
        # higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
396
397
398
399

        if "alias" in dic:
            k = dic.pop("alias")

400
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
401
        metric_items = sorted(metric_items)
402
403

        for (mf), v in metric_items:
404
            m, _, f = mf.partition(",")
405
406
407
            if m.endswith("_stderr"):
                continue

Baber's avatar
Baber committed
408
409
410
            # hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")
            # TODO: fix
            hib = "↑"
411

Baber's avatar
Baber committed
412
            v = f"{v:.4f}" if isinstance(v, float) else v
Lintang Sutawika's avatar
Lintang Sutawika committed
413

414
415
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Baber's avatar
Baber committed
416
                se = "   N/A" if se == "N/A" else f"{se:.4f}"
Lintang Sutawika's avatar
Lintang Sutawika committed
417
                values.append([k, version, f, n, m, hib, v, "±", se])
418
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
419
                values.append([k, version, f, n, m, hib, v, "", ""])
420
421
422
423
424
425
426
427
428
429
430
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


431
432
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
433
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
434
435
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
436

Baber's avatar
Baber committed
437
438
    wraps(fn)

439
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
440
441
442
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
443
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
444
445
                "lm-evaluation-harness!"
            )
446
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
447

448
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
449

Fabrizio Milo's avatar
Fabrizio Milo committed
450

451
452
453
454
def ignore_constructor(loader, node):
    return node


455
def import_function(loader: yaml.Loader, node, yaml_path: Path):
lintangsutawika's avatar
lintangsutawika committed
456
457
    function_name = loader.construct_scalar(node)

lintangsutawika's avatar
lintangsutawika committed
458
    *module_name, function_name = function_name.split(".")
459
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
460
        module_name = ".".join(module_name)
461
    module_path = yaml_path.parent / f"{module_name}.py"
lintangsutawika's avatar
lintangsutawika committed
462

463
464
465
466
    spec = importlib.util.spec_from_file_location(module_name, module_path.as_posix())

    if spec is None:
        raise ImportError(f"Could not import module {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
467
    module = importlib.util.module_from_spec(spec)
468
469
470

    if spec.loader is None:
        raise ImportError(f"Module loader is None, {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
471
472
473
474
475
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
476

Baber's avatar
Baber committed
477
478
479
def load_yaml_config(
    yaml_path: str | None = None, yaml_config=None, yaml_dir=None, mode="full"
):
480
481
482
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
483
484
485
        if yaml_path is None:
            raise ValueError("yaml_path must be provided if mode is 'full'.")
        # Attach yaml_path to the import function so that it can be used later
Baber's avatar
Baber committed
486
        constructor_fn = partial(import_function, yaml_path=Path(yaml_path))
lintangsutawika's avatar
lintangsutawika committed
487

488
    loader = yaml.CLoader if yaml.__with_libyaml__ else yaml.FullLoader
489
    # Add the import_function constructor to the YAML loader
490
    yaml.add_constructor("!function", constructor_fn, Loader=loader)
491
492
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
493
            yaml_config = yaml.load(file, Loader=loader)
lintangsutawika's avatar
lintangsutawika committed
494

lintangsutawika's avatar
lintangsutawika committed
495
496
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
497
498
499
500
501
502
503

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

504
        if isinstance(include_path, str):
505
506
507
508
509
510
511
512
513
514
515
516
517
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
518
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
519
520
521
522
523
524
525
526
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
527
528


Ethan Smith's avatar
Ethan Smith committed
529
def regex_replace(string, pattern, repl, count: int = 0):
530
531
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
532

lintangsutawika's avatar
lintangsutawika committed
533

534
env = Environment(
Baber's avatar
Baber committed
535
    loader=BaseLoader(), undefined=StrictUndefined, keep_trailing_newline=True
536
)
537
env.filters["regex_replace"] = regex_replace
538
539


Baber's avatar
Baber committed
540
@lru_cache(maxsize=128)
Baber's avatar
Baber committed
541
def _compile(raw: str) -> Template:
Baber's avatar
Baber committed
542
543
544
    return env.from_string(raw)


baberabb's avatar
baberabb committed
545
def apply_template(template: str, doc: dict) -> str:
Baber's avatar
Baber committed
546
    rtemplate = _compile(template)
547
    return rtemplate.render(**doc)
548
549


Baber's avatar
Baber committed
550
551
552
553
554
555
556
def create_iterator(
    raw_iterator: collections.Iterator,
    *,
    rank: int = 0,
    world_size: int = 1,
    limit: int | None = None,
) -> islice:
557
558
559
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
560
561
562
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
563
564
565
566
567
568
569
570
571
572


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601


def convert_pil_to_hash(value):
    from io import BytesIO

    img_bytes = BytesIO()
    value.save(img_bytes, format="PNG")
    return hashlib.sha256(str(img_bytes).encode()).hexdigest()


def convert_bytes_to_hash(value):
    return hashlib.sha256(str(value).encode()).hexdigest()


def hash_dict_images(data_dict):
    """
    Create a deep copy of `data_dict` where all bytes and PIL.Image.Image values
    are replaced by their respective hashes using the provided converter functions.

    Parameters:
        data_dict (dict): The input dictionary with arbitrary nesting of dicts and lists.

    Returns:
        dict: A new dictionary with the same structure as `data_dict`, but with all
              bytes and PIL.Image.Image objects replaced by their hashes.
    """

    def _process_value(value):
        # Bytes -> hash
Baber Abbasi's avatar
Baber Abbasi committed
602
603
        from PIL import Image

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        if isinstance(value, (bytes, bytearray)):
            return convert_bytes_to_hash(value)
        # PIL Image -> hash
        if isinstance(value, Image.Image):
            return convert_pil_to_hash(value)
        # Nested dictionary -> recurse
        if isinstance(value, dict):
            return {k: _process_value(v) for k, v in value.items()}
        # List or tuple -> recurse, preserving type
        if isinstance(value, list):
            return [_process_value(v) for v in value]
        if isinstance(value, tuple):
            return tuple(_process_value(v) for v in value)
        # Other types remain unchanged
        return value

    # Ensure the top-level is a dict
    if not isinstance(data_dict, dict):
        raise TypeError("Input must be a dictionary")

Baber Abbasi's avatar
Baber Abbasi committed
624
625
626
627
628
    return (
        {key: _process_value(val) for key, val in data_dict.items()}
        if importlib.util.find_spec("PIL")
        else data_dict
    )