utils.py 21.7 KB
Newer Older
1
2
3
4
5
import collections
import fnmatch
import functools
import gc
import importlib.util
6
import inspect
7
8
import logging
import os
9
import pathlib
10
import re
11
import subprocess
12
13
14
import sys
from itertools import islice
from typing import Any, Callable, Iterator, List, Literal, Union
15
16

import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
18
import yaml
19
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
20

lintangsutawika's avatar
lintangsutawika committed
21

22
23
24
25
26
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
27
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
28

29
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
55
56
57
58
59
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
60
61
62
63
64
65
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
66
67


Jason Phang's avatar
gpt3  
Jason Phang committed
68
69
70
71
72
73
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
74
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
75
76
    if not args_string:
        return {}
77
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
78
79
80
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
81
    return args_dict
Leo Gao's avatar
Leo Gao committed
82

Fabrizio Milo's avatar
Fabrizio Milo committed
83

Leo Gao's avatar
Leo Gao committed
84
85
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
86
        yield from iter
Leo Gao's avatar
Leo Gao committed
87
88


Ethan Smith's avatar
Ethan Smith committed
89
def chunks(iter, n: int = 0, fn=None):
baberabb's avatar
baberabb committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    """
    Divides an iterable into chunks of specified size or based on a given function.
    Useful for batching

    Parameters:
    - iter: The input iterable to be divided into chunks.
    - n: An integer representing the size of each chunk. Default is 0.
    - fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.

    Returns:
    An iterator that yields chunks of the input iterable.

    Example usage:
    ```
    data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    for chunk in chunks(data, 3):
        print(chunk)
    ```
    Output:
    ```
    [1, 2, 3]
    [4, 5, 6]
    [7, 8, 9]
    [10]
    ```
    """
Leo Gao's avatar
Leo Gao committed
116
    arr = []
117
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
118
        arr.append(x)
119
        if len(arr) == (fn(i, iter) if fn else n):
Leo Gao's avatar
Leo Gao committed
120
121
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
122
123
124
125

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
126

127
128
129
130
131
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
132

133
134
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
135

gakada's avatar
gakada committed
136
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
137
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
138
139
140
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
141
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
142
        for value in values.split(","):
143
            if len(fnmatch.filter(self.choices, value)) == 0:
144
                eval_logger.info("Available tasks to choose:")
145
146
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
147
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
148
149
        return True

Ethan Smith's avatar
Ethan Smith committed
150
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
151
152
153
154
155
156
157
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
158
    if isinstance(patterns, str):
159
160
        patterns = [patterns]

gakada's avatar
gakada committed
161
162
163
164
165
166
167
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
168
169
170
171
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
172
173
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
174
    string = re.sub(r" (['.,])", r"\1", string)
175
176
177
    return string


Jason Phang's avatar
Jason Phang committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
205
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
206
207
208
209
210
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
211

Jason Phang's avatar
Jason Phang committed
212
        yield (
lintangsutawika's avatar
lintangsutawika committed
213
214
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
215
216
217
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
218

Leo Gao's avatar
Leo Gao committed
219
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
220
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
221
    a, b = pair
222
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
223

Jason Phang's avatar
Jason Phang committed
224

225
class Reorderer:
baberabb's avatar
baberabb committed
226
227
228
229
230
231
232
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
233
234
235
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
236
237
238
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
239
240
241
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
242

243
    def get_reordered(self):
baberabb's avatar
baberabb committed
244
245
246
247
248
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
249
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
250

251
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
252
253
254
255
256
257
258
259
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
260
261
262
263
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
264
            for ind in inds:
265
266
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
267

268
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
269

270
271
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
272

haileyschoelkopf's avatar
haileyschoelkopf committed
273
274
275
276
277
278
279
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
280
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
331
def make_table(result_dict, column: str = "results"):
332
    """Generate table of results."""
333
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
334

lintangsutawika's avatar
lintangsutawika committed
335
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
336
337
338
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
339

lintangsutawika's avatar
lintangsutawika committed
340
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
341
        column_name,
lintangsutawika's avatar
lintangsutawika committed
342
343
        "Version",
        "Filter",
344
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
345
346
347
348
349
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
350

lintangsutawika's avatar
lintangsutawika committed
351
352
353
354
355
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

356
357
    values = []

lintangsutawika's avatar
lintangsutawika committed
358
    for k, dic in result_dict[column].items():
359
        version = result_dict["versions"][k]
360
        n = str(result_dict["n-shot"][k])
361
362
363
364

        if "alias" in dic:
            k = dic.pop("alias")

365
366
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
367
368
369
            if m.endswith("_stderr"):
                continue

370
371
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
372
373
374
                if se != "N/A":
                    se = "%.4f" % se
                values.append([k, version, f, n, m, "%.4f" % v, "±", se])
375
            else:
376
                values.append([k, version, f, n, m, "%.4f" % v, "", ""])
377
378
379
380
381
382
383
384
385
386
387
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


388
389
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
390
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
391
392
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
393

394
395
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
396
397
398
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
399
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
400
401
                "lm-evaluation-harness!"
            )
402
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
403

404
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
405

Fabrizio Milo's avatar
Fabrizio Milo committed
406

Stephen Hogg's avatar
Stephen Hogg committed
407
408
409
410
411
412
413
414
415
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
416
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
417
418
419
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
420
421
422
423
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
424
425

@positional_deprecated
426
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
427
428
429
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
430
431
    import pytest

432
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
433
434
435
436
437
438
439
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
440
441
442
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
443
444
445
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
446
447


448
449
450
451
452
453
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
454
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
455
        git_hash = git_hash.decode()
456
457
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
458
459
460
461
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
462
463
464
465
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
466
    *module_name, function_name = function_name.split(".")
467
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
468
469
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
470
471
472
473
474
475
476
477

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
478

lintangsutawika's avatar
lintangsutawika committed
479
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
480
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
481
482


483
484
485
486
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
487

lintangsutawika's avatar
lintangsutawika committed
488
489
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
490
491
492
493
494
495
496

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

497
        if isinstance(include_path, str):
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
520
521


Ethan Smith's avatar
Ethan Smith committed
522
def regex_replace(string, pattern, repl, count: int = 0):
523
524
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
525

lintangsutawika's avatar
lintangsutawika committed
526

527
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
528
env.filters["regex_replace"] = regex_replace
529
530


baberabb's avatar
baberabb committed
531
def apply_template(template: str, doc: dict) -> str:
532
533
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
534
535


536
537
538
539
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
540
541
542
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
543
544


haileyschoelkopf's avatar
haileyschoelkopf committed
545
546
547
548
549
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
550
551
552
553
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
554
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
555
556
557
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
558

lintangsutawika's avatar
lintangsutawika committed
559
    for i, tensor in enumerate(tensors):
560
561
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
562
563
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
564
565
566
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
567
568
569
570
571
572
573
574
575
576
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
577
578
579
580
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
581
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
582
                            max_length - tensor_len,
583
584
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
585
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
586
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
587
588
589
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
590
591
592
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
593
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
594
595


Ethan Smith's avatar
Ethan Smith committed
596
def clear_torch_cache() -> None:
597
598
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
599
600


lintangsutawika's avatar
lintangsutawika committed
601
602
603
604
605
606
607
608
609
610
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
611
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
612
613
614
615
616
617
618
619
620
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
621
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
622
623
624
625
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
626
627
628
629
630
631
632
633
        # we look back for 2 more tokens than it takes to encode our stop sequence
        # because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']`
        # and we don't want to mistakenly not stop a generation because our
        # (string) stop sequence was output in a different tokenization

        # NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model,
        # and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized
        self.sequence_id_len = len(self.sequence_ids) + 2
haileyschoelkopf's avatar
haileyschoelkopf committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)
        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )
baberabb's avatar
baberabb committed
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716


# from more_itertools
def divide(iterable, n) -> List[Iterator]:
    """Divide the elements from *iterable* into *n* parts, maintaining
    order.

        >>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6])
        >>> list(group_1)
        [1, 2, 3]
        >>> list(group_2)
        [4, 5, 6]

    If the length of *iterable* is not evenly divisible by *n*, then the
    length of the returned iterables will not be identical:

        >>> children = divide(3, [1, 2, 3, 4, 5, 6, 7])
        >>> [list(c) for c in children]
        [[1, 2, 3], [4, 5], [6, 7]]

    If the length of the iterable is smaller than n, then the last returned
    iterables will be empty:

        >>> children = divide(5, [1, 2, 3])
        >>> [list(c) for c in children]
        [[1], [2], [3], [], []]

    This function will exhaust the iterable before returning and may require
    significant storage. If order is not important, see :func:`distribute`,
    which does not first pull the iterable into memory.

    """
    if n < 1:
        raise ValueError("n must be at least 1")

    try:
        iterable[:0]
    except TypeError:
        seq = tuple(iterable)
    else:
        seq = iterable

    q, r = divmod(len(seq), n)

    ret = []
    stop = 0
    for i in range(1, n + 1):
        start = stop
        stop += q + 1 if i <= r else q
        ret.append(iter(seq[start:stop]))

    return ret