gpt.py 46 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2

3
import logging
Tri Dao's avatar
Tri Dao committed
4
import math
5
import re
Tri Dao's avatar
Tri Dao committed
6
from collections import OrderedDict, namedtuple
Tri Dao's avatar
Tri Dao committed
7
from collections.abc import Sequence
Tri Dao's avatar
Tri Dao committed
8
from functools import partial
Tri Dao's avatar
Tri Dao committed
9
10
11
12

import torch
import torch.nn as nn
import torch.nn.functional as F
13
from einops import rearrange
Tri Dao's avatar
Tri Dao committed
14
15
from transformers import GPT2Config

Kevin Hu's avatar
Kevin Hu committed
16
from flash_attn.models.bigcode import remap_state_dict_hf_bigcode
Tri Dao's avatar
Tri Dao committed
17
18
19
from flash_attn.models.falcon import remap_state_dict_hf_falcon
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
from flash_attn.models.gptj import remap_state_dict_hf_gptj
20
from flash_attn.models.llama import remap_state_dict_hf_llama
Tri Dao's avatar
Tri Dao committed
21
from flash_attn.models.opt import remap_state_dict_hf_opt
Tri Dao's avatar
Tri Dao committed
22
from flash_attn.modules.block import Block, ParallelBlock
23
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
Tri Dao's avatar
Tri Dao committed
24
from flash_attn.modules.mha import MHA, ParallelMHA
Kevin Hu's avatar
Kevin Hu committed
25
26
27
28
29
30
31
32
from flash_attn.modules.mlp import (
    FusedMLP,
    GatedMlp,
    Mlp,
    ParallelFusedMLP,
    ParallelGatedMlp,
    ParallelMLP,
)
Tri Dao's avatar
Tri Dao committed
33
from flash_attn.ops.activations import sqrelu_fwd
Kevin Hu's avatar
Kevin Hu committed
34
from flash_attn.utils.distributed import all_gather_raw, get_dim_for_local_rank, sync_shared_params
Tri Dao's avatar
Tri Dao committed
35
from flash_attn.utils.generation import GenerationMixin
Tri Dao's avatar
Tri Dao committed
36
from flash_attn.utils.pretrained import state_dict_from_pretrained
37
38
39
40
41

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
    ColumnParallelLinear = None
Tri Dao's avatar
Tri Dao committed
42
43
44
45
46
47

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

48
try:
Kevin Hu's avatar
Kevin Hu committed
49
    from flash_attn.ops.layer_norm import dropout_add_layer_norm_parallel_residual
50
51
52
except ImportError:
    dropout_add_layer_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
53
54
55
try:
    from flash_attn.ops.rms_norm import RMSNorm, dropout_add_rms_norm
except ImportError:
56
    RMSNorm, dropout_add_rms_norm = None, None
Tri Dao's avatar
Tri Dao committed
57
58
59
60
61
62

try:
    from flash_attn.ops.rms_norm import dropout_add_rms_norm_parallel_residual
except ImportError:
    dropout_add_rms_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
63
try:
Tri Dao's avatar
Tri Dao committed
64
    from flash_attn.ops.triton.mlp import FusedDenseSqreluDense
Tri Dao's avatar
Tri Dao committed
65
66
67
except ImportError:
    FusedDenseSqreluDense = None

68
69
70
logger = logging.getLogger(__name__)


71
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
72
73
    factory_kwargs = {"device": device, "dtype": dtype}
    head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
Tri Dao's avatar
Tri Dao committed
74
75
76
77
    softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5)
    if config.scale_attn_by_inverse_layer_idx:
        assert layer_idx is not None
        softmax_scale /= float(layer_idx + 1)
Tri Dao's avatar
Tri Dao committed
78
    dwconv = getattr(config, "attn_dwconv", False)
79
    if dwconv:
Tri Dao's avatar
Tri Dao committed
80
81
82
83
84
85
86
87
88
        assert process_group is None, "TensorParallel MHA does not support dwconv yet"
    qkv_proj_bias = getattr(config, "qkv_proj_bias", True)
    out_proj_bias = getattr(config, "out_proj_bias", True)
    rotary_emb_dim = int(getattr(config, "rotary_emb_fraction", 0.0) * head_dim)
    rotary_emb_base = getattr(config, "rotary_emb_base", 10000.0)
    rotary_emb_scale_base = getattr(config, "rotary_emb_scale_base", None)
    rotary_emb_interleaved = getattr(config, "rotary_emb_interleaved", False)
    use_flash_attn = getattr(config, "use_flash_attn", False)
    fused_bias_fc = getattr(config, "fused_bias_fc", False)
89
    if not fused_bias_fc:
Tri Dao's avatar
Tri Dao committed
90
        assert process_group is None, "TensorParallel MHA requires fused_bias_fc"
91
    mha_cls = MHA if process_group is None else ParallelMHA
Tri Dao's avatar
Tri Dao committed
92
93
94
95
96
97
98
99
100
101
102
    serial_kwargs = (
        {"fused_bias_fc": fused_bias_fc, "dwconv": dwconv} if process_group is None else {}
    )
    parallel_kwargs = (
        {
            "process_group": process_group,
            "sequence_parallel": getattr(config, "sequence_parallel", True),
        }
        if process_group is not None
        else {}
    )
Tri Dao's avatar
Tri Dao committed
103
    num_heads_kv = getattr(config, "n_head_kv", None)
Tri Dao's avatar
Tri Dao committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    mixer_cls = partial(
        mha_cls,
        num_heads=config.num_attention_heads,
        num_heads_kv=num_heads_kv,
        qkv_proj_bias=qkv_proj_bias,
        out_proj_bias=out_proj_bias,
        dropout=config.attn_pdrop,
        softmax_scale=softmax_scale,
        causal=True,
        layer_idx=layer_idx,
        rotary_emb_dim=rotary_emb_dim,
        rotary_emb_base=rotary_emb_base,
        rotary_emb_scale_base=rotary_emb_scale_base,
        rotary_emb_interleaved=rotary_emb_interleaved,
        use_flash_attn=use_flash_attn,
        **serial_kwargs,
        **parallel_kwargs,
        **factory_kwargs,
    )
Tri Dao's avatar
Tri Dao committed
123
124
125
    return mixer_cls


126
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
127
128
129
130
    factory_kwargs = {"device": device, "dtype": dtype}
    mlp_fc1_bias = getattr(config, "mlp_fc1_bias", True)
    mlp_fc2_bias = getattr(config, "mlp_fc2_bias", True)
    fused_mlp = getattr(config, "fused_mlp", False)
131
    if fused_mlp:
Tri Dao's avatar
Tri Dao committed
132
133
134
135
        assert config.activation_function in [
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
Kevin Hu's avatar
Kevin Hu committed
136
            "gelu_pytorch_tanh",
Tri Dao's avatar
Tri Dao committed
137
138
139
140
            "relu",
            "sqrelu",
        ]
    fused_dense_sqrelu_dense = getattr(config, "fused_dense_sqrelu_dense", False)
141
    if fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
142
143
144
        assert config.activation_function == "sqrelu", (
            "fused_dense_sqrelu_dense only " "supports approximate activation_function sqrelu"
        )
145
146
    assert not (fused_dense_sqrelu_dense and fused_mlp)
    if not fused_mlp and not fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
147
148
149
150
151
        assert config.activation_function in [
            "gelu",
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
Kevin Hu's avatar
Kevin Hu committed
152
            "gelu_pytorch_tanh",
Tri Dao's avatar
Tri Dao committed
153
154
155
156
157
158
159
160
161
162
163
164
            "relu",
            "sqrelu",
            "glu",
            "swiglu",
            "geglu",
        ]
        if config.activation_function in ["glu", "swiglu", "geglu"]:
            activation = (
                F.sigmoid
                if config.activation_function == "glu"
                else (F.silu if config.activation_function == "swiglu" else F.gelu)
            )
165
            mlp_cls = GatedMlp if process_group is None else ParallelGatedMlp
Tri Dao's avatar
Tri Dao committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
183
        else:
Tri Dao's avatar
Tri Dao committed
184
            if config.activation_function == "relu":
Tri Dao's avatar
Tri Dao committed
185
                activation = partial(F.relu, inplace=True)
Tri Dao's avatar
Tri Dao committed
186
            elif config.activation_function == "sqrelu":
Tri Dao's avatar
Tri Dao committed
187
188
                activation = sqrelu_fwd
            else:
Tri Dao's avatar
Tri Dao committed
189
190
                approximate = (
                    "tanh"
Kevin Hu's avatar
Kevin Hu committed
191
192
                    if config.activation_function
                    in ["gelu_new", "gelu_fast", "gelu_approx", "gelu_pytorch_tanh"]
Tri Dao's avatar
Tri Dao committed
193
194
195
                    else "none"
                )
                activation = partial(F.gelu, approximate=approximate)
Tri Dao's avatar
Tri Dao committed
196
            mlp_cls = Mlp if process_group is None else ParallelMLP
Tri Dao's avatar
Tri Dao committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
214
    else:
Tri Dao's avatar
Tri Dao committed
215
        mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
Tri Dao's avatar
Tri Dao committed
216
217
218
219
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
220
221
        if fused_mlp:
            if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
222
223
224
                raise ImportError("fused_dense is not installed")
            activation = (
                "gelu_approx"
Kevin Hu's avatar
Kevin Hu committed
225
226
                if config.activation_function
                in ["gelu_new", "gelu_fast", "gelu_approx", "gelu_pytorch_tanh"]
Tri Dao's avatar
Tri Dao committed
227
228
                else config.activation_function
            )
229
            mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP
Tri Dao's avatar
Tri Dao committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                checkpoint_lvl=mlp_checkpoint_lvl,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
248
        elif fused_dense_sqrelu_dense:
249
            if process_group is not None:
Tri Dao's avatar
Tri Dao committed
250
                assert fused_mlp, "Tensor Parallel is not implemented for FusedDenseSqreluDense"
Tri Dao's avatar
Tri Dao committed
251
            assert FusedDenseSqreluDense is not None
Tri Dao's avatar
Tri Dao committed
252
253
254
255
256
257
            mlp_cls = partial(
                FusedDenseSqreluDense,
                hidden_features=config.n_inner,
                checkpoint_lvl=mlp_checkpoint_lvl,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
258
        else:
Tri Dao's avatar
Tri Dao committed
259
            raise RuntimeError("MLP type not supported")
Tri Dao's avatar
Tri Dao committed
260
261
262
    return mlp_cls


263
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
264
265
    factory_kwargs = {"device": device, "dtype": dtype}
    sequence_parallel = getattr(config, "sequence_parallel", True)
266
267
    mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
268
269
270
271
272
273
    use_rms_norm = getattr(config, "rms_norm", False)
    norm_cls = partial(
        nn.LayerNorm if not use_rms_norm else RMSNorm,
        eps=config.layer_norm_epsilon,
        **factory_kwargs,
    )
Tri Dao's avatar
Tri Dao committed
274
    # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
Tri Dao's avatar
Tri Dao committed
275
    residual_in_fp32 = getattr(config, "residual_in_fp32", False)
Tri Dao's avatar
Tri Dao committed
276
    resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop
Tri Dao's avatar
Tri Dao committed
277
278
    prenorm = getattr(config, "prenorm", True)
    parallel_block = getattr(config, "parallel_block", False)
Tri Dao's avatar
Tri Dao committed
279
280
    if not parallel_block:
        block = Block(
Tri Dao's avatar
Tri Dao committed
281
282
283
284
285
286
287
288
            config.hidden_size,
            mixer_cls,
            mlp_cls,
            norm_cls=norm_cls,
            prenorm=prenorm,
            resid_dropout1=resid_dropout1,
            resid_dropout2=config.resid_pdrop,
            fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
Tri Dao's avatar
Tri Dao committed
289
290
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
Tri Dao's avatar
Tri Dao committed
291
            mark_shared_params=process_group is not None,
Tri Dao's avatar
Tri Dao committed
292
293
294
295
        )
    else:
        assert prenorm
        block = ParallelBlock(
Tri Dao's avatar
Tri Dao committed
296
297
298
299
300
301
302
303
            config.hidden_size,
            mixer_cls,
            mlp_cls,
            norm_cls=norm_cls,
            resid_dropout1=resid_dropout1,
            resid_dropout2=config.resid_pdrop,
            tied_norm=getattr(config, "parallel_block_tied_norm", False),
            fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
Tri Dao's avatar
Tri Dao committed
304
305
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
Tri Dao's avatar
Tri Dao committed
306
            mark_shared_params=process_group is not None,
Tri Dao's avatar
Tri Dao committed
307
        )
Tri Dao's avatar
Tri Dao committed
308
309
310
311
    block.layer_idx = layer_idx
    return block


312
class GPTPreTrainedModel(nn.Module):
Tri Dao's avatar
Tri Dao committed
313
314
    """An abstract class to handle weights initialization and
    a simple interface for dowloading and loading pretrained models.
315
    """
Tri Dao's avatar
Tri Dao committed
316

317
318
319
320
321
322
323
324
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
Tri Dao's avatar
Tri Dao committed
325
326
                )
            )
327
328
329
        self.config = config

    @classmethod
Tri Dao's avatar
Tri Dao committed
330
331
332
333
334
335
336
337
338
339
340
341
    def from_pretrained(
        cls,
        model_name,
        config,
        *args,
        strict=True,
        device=None,
        dtype=None,
        world_size=1,
        rank=0,
        **kwargs,
    ):
342
343
344
345
346
        """
        Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
347
        model = cls(config, *args, device=device, dtype=dtype, **kwargs)
348
349
        # Load state_dict in cpu because we already initialized the model in GPU, and we don't
        # want extra stuff taking up more GPU memory
Tri Dao's avatar
Tri Dao committed
350
351
        state_dict = state_dict_from_pretrained(model_name, device="cpu", dtype=dtype)
        if model_name.startswith("gpt2"):
Tri Dao's avatar
Tri Dao committed
352
            state_dict = remap_state_dict_hf_gpt2(state_dict, config)
Tri Dao's avatar
Tri Dao committed
353
        elif model_name.startswith("facebook/opt"):
Tri Dao's avatar
Tri Dao committed
354
            state_dict = remap_state_dict_hf_opt(state_dict, config)
355
356
357
358
        elif (
            model_name.startswith("EleutherAI/gpt-j-")
            or model_name.startswith("togethercomputer/GPT-JT-")
        ):
Tri Dao's avatar
Tri Dao committed
359
            state_dict = remap_state_dict_hf_gptj(state_dict, config)
360
361
362
363
364
        elif (
            model_name.startswith("EleutherAI/gpt-neox-")
            or model_name.startswith("EleutherAI/pythia-")
            or model_name.startswith("togethercomputer/RedPajama-INCITE-")
        ):
Tri Dao's avatar
Tri Dao committed
365
            state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
Tri Dao's avatar
Tri Dao committed
366
        elif model_name.startswith("tiiuae/falcon-"):
Tri Dao's avatar
Tri Dao committed
367
            state_dict = remap_state_dict_hf_falcon(state_dict, config)
368
369
        elif model_name.startswith("meta-llama/Llama-"):
            state_dict = remap_state_dict_hf_llama(state_dict, config)
Kevin Hu's avatar
Kevin Hu committed
370
371
        elif model_name.startswith("bigcode/") or model_name.startswith("WizardLM/"):
            state_dict = remap_state_dict_hf_bigcode(state_dict, config)
Tri Dao's avatar
Tri Dao committed
372
        else:
Tri Dao's avatar
Tri Dao committed
373
            raise NotImplementedError(f"Model {model_name} not supported")
374
375
376
        if world_size > 1:
            state_dict = shard_state_dict_tp(state_dict, config, world_size, rank)
        load_return = model.load_state_dict(state_dict, strict=strict)
377
378
379
        logger.info(load_return)
        return model

Tri Dao's avatar
Tri Dao committed
380

Tri Dao's avatar
Tri Dao committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))


403
class GPTModel(GPTPreTrainedModel):
404
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
405
        super().__init__(config)
Tri Dao's avatar
Tri Dao committed
406
        factory_kwargs = {"device": device, "dtype": dtype}
407
        self.process_group = process_group
Tri Dao's avatar
Tri Dao committed
408
409
410
411
412
413
        self.sequence_parallel = getattr(config, "sequence_parallel", True)
        assert config.activation_function in [
            "gelu",
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
Kevin Hu's avatar
Kevin Hu committed
414
            "gelu_pytorch_tanh",
Tri Dao's avatar
Tri Dao committed
415
416
417
418
419
420
421
422
423
424
            "relu",
            "sqrelu",
            "glu",
            "swiglu",
            "geglu",
        ]
        pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
        vocab_size = (
            math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
        )
Tri Dao's avatar
Tri Dao committed
425
        # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
Tri Dao's avatar
Tri Dao committed
426
        self.residual_in_fp32 = getattr(config, "residual_in_fp32", False)
Tri Dao's avatar
Tri Dao committed
427
        # These 2 options are for OPT-350m
Tri Dao's avatar
Tri Dao committed
428
429
430
        self.prenorm = getattr(config, "prenorm", True)
        use_rms_norm = getattr(config, "rms_norm", False)
        word_embed_proj_dim = getattr(config, "word_embed_proj_dim", None)
Tri Dao's avatar
Tri Dao committed
431
        # For GPT-J, GPT-NeoX
Tri Dao's avatar
Tri Dao committed
432
        self.parallel_block = getattr(config, "parallel_block", False)
Tri Dao's avatar
Tri Dao committed
433

434
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
435
            self.embeddings = GPT2Embeddings(
Tri Dao's avatar
Tri Dao committed
436
437
438
439
440
                config.hidden_size,
                vocab_size,
                config.max_position_embeddings,
                word_embed_proj_dim=word_embed_proj_dim,
                **factory_kwargs,
Tri Dao's avatar
Tri Dao committed
441
            )
442
443
        else:
            self.embeddings = ParallelGPT2Embeddings(
Tri Dao's avatar
Tri Dao committed
444
445
446
447
448
449
                config.hidden_size,
                vocab_size,
                config.max_position_embeddings,
                process_group=process_group,
                sequence_parallel=self.sequence_parallel,
                **factory_kwargs,
450
            )
Tri Dao's avatar
Tri Dao committed
451

Tri Dao's avatar
Tri Dao committed
452
        # We change the order of dropout, residual and layer norm:
Tri Dao's avatar
Tri Dao committed
453
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
Tri Dao's avatar
Tri Dao committed
454
455
456
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
Tri Dao's avatar
Tri Dao committed
457
        # This is for performance reason: we can fuse dropout + add + layer_norm.
Tri Dao's avatar
Tri Dao committed
458
459
460
461
462
463
        self.layers = nn.ModuleList(
            [
                create_block(config, layer_idx=i, process_group=process_group, **factory_kwargs)
                for i in range(config.num_hidden_layers)
            ]
        )
Tri Dao's avatar
Tri Dao committed
464

Tri Dao's avatar
Tri Dao committed
465
        self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
466
        if self.fused_dropout_add_ln:
Tri Dao's avatar
Tri Dao committed
467
468
469
470
            if (not self.parallel_block and dropout_add_layer_norm is None) or (
                self.parallel_block and dropout_add_layer_norm_parallel_residual is None
            ):
                raise ImportError("dropout_layer_norm is not installed")
Tri Dao's avatar
Tri Dao committed
471
472
        if self.prenorm:
            self.drop_f = nn.Dropout(config.resid_pdrop)
Tri Dao's avatar
Tri Dao committed
473
            norm_cls = nn.LayerNorm if not use_rms_norm else RMSNorm
Tri Dao's avatar
Tri Dao committed
474
475
476
            self.ln_f = norm_cls(
                config.hidden_size, eps=config.layer_norm_epsilon, **factory_kwargs
            )
477
        if process_group is not None:
Tri Dao's avatar
Tri Dao committed
478
            for p in self.ln_f.parameters():
479
480
481
482
483
                # Mark the norm parameters as "shared_params" so that we sync their values at init.
                p._shared_params = True
                # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads.
                if self.sequence_parallel:
                    p._sequence_parallel = True
484

Tri Dao's avatar
Tri Dao committed
485
486
487
488
489
490
491
        self.apply(
            partial(
                _init_weights,
                n_layer=config.num_hidden_layers,
                initializer_range=config.initializer_range,
            )
        )
492
493
494
        self.tie_weights()

    def tie_weights(self):
495
        if self.process_group is not None:
496
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
497

498
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
Tri Dao's avatar
Tri Dao committed
499
500
501
502
        return {
            i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
            for i, layer in enumerate(self.layers)
        }
503

Tri Dao's avatar
Tri Dao committed
504
    def forward(self, input_ids, position_ids=None, inference_params=None):
505
506
507
        # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
        # dimensions so that we can split on it easily, in case of small batch size.
        # Only the attention layers need to know the seqlen.
Tri Dao's avatar
Tri Dao committed
508
509
510
511
512
        embedding_kwargs = (
            {"combine_batch_seqlen_dim": True}
            if self.process_group is not None and self.sequence_parallel
            else {}
        )
513
        hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
Tri Dao's avatar
Tri Dao committed
514
515
        if self.parallel_block:
            hidden_states2 = None
Tri Dao's avatar
Tri Dao committed
516
        residual = None
Tri Dao's avatar
Tri Dao committed
517
518
519
520
521
        mixer_kwargs = (
            {"seqlen": input_ids.shape[1]}
            if self.process_group is not None and self.sequence_parallel
            else {}
        )
Tri Dao's avatar
Tri Dao committed
522
        if inference_params is not None:
Tri Dao's avatar
Tri Dao committed
523
            mixer_kwargs["inference_params"] = inference_params
Tri Dao's avatar
Tri Dao committed
524
        for layer in self.layers:
Tri Dao's avatar
Tri Dao committed
525
            if self.prenorm:
Tri Dao's avatar
Tri Dao committed
526
                if not self.parallel_block:
Tri Dao's avatar
Tri Dao committed
527
528
529
                    hidden_states, residual = layer(
                        hidden_states, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
530
531
532
533
                else:
                    hidden_states, hidden_states2, residual = layer(
                        hidden_states, hidden_states2, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
534
535
536
537
538
            else:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
        if self.prenorm:
            if not self.fused_dropout_add_ln:
                dropped = self.drop_f(hidden_states)
Tri Dao's avatar
Tri Dao committed
539
540
541
542
                if not self.parallel_block:
                    residual = (dropped + residual) if residual is not None else dropped
                else:
                    dropped2 = self.drop_f(hidden_states2)
Tri Dao's avatar
Tri Dao committed
543
544
545
546
547
                    residual = (
                        (residual + dropped + dropped2)
                        if residual is not None
                        else dropped + dropped2
                    )
Tri Dao's avatar
Tri Dao committed
548
549
                hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
            else:
Tri Dao's avatar
Tri Dao committed
550
                # Set prenorm=False here since we don't need the residual
551
                if not self.parallel_block:
Tri Dao's avatar
Tri Dao committed
552
553
554
555
556
                    fused_add_norm_fn = (
                        dropout_add_rms_norm
                        if isinstance(self.ln_f, RMSNorm)
                        else dropout_add_layer_norm
                    )
557
                    hidden_states = fused_add_norm_fn(
Tri Dao's avatar
Tri Dao committed
558
559
560
561
562
563
564
565
                        hidden_states,
                        residual,
                        self.ln_f.weight,
                        self.ln_f.bias,
                        self.drop_f.p if self.training else 0.0,
                        self.ln_f.eps,
                        prenorm=False,
                        residual_in_fp32=self.residual_in_fp32,
566
567
                    )
                else:
Tri Dao's avatar
Tri Dao committed
568
569
570
571
572
                    fused_add_norm_fn = (
                        dropout_add_rms_norm_parallel_residual
                        if isinstance(self.ln_f, RMSNorm)
                        else dropout_add_layer_norm_parallel_residual
                    )
573
                    hidden_states, _ = fused_add_norm_fn(
Tri Dao's avatar
Tri Dao committed
574
575
576
577
578
579
580
581
582
583
584
                        hidden_states,
                        hidden_states2,
                        residual,
                        self.ln_f.weight,
                        self.ln_f.bias,
                        None,
                        None,
                        self.drop_f.p if self.training else 0.0,
                        self.ln_f.eps,
                        prenorm=False,
                        residual_in_fp32=self.residual_in_fp32,
585
                    )
Tri Dao's avatar
Tri Dao committed
586
587
588
        return hidden_states


Tri Dao's avatar
Tri Dao committed
589
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
590
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
591
        factory_kwargs = {"device": device, "dtype": dtype}
592
        super().__init__(config)
593
594
        self.process_group = process_group
        self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
595
596
597
598
599
600
        self.tie_word_embeddings = getattr(config, "tie_word_embeddings", True)
        lm_head_bias = getattr(config, "lm_head_bias", False)
        pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
        vocab_size = (
            math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
        )
Tri Dao's avatar
Tri Dao committed
601
        # This option is for OPT-350m
Tri Dao's avatar
Tri Dao committed
602
        word_embed_proj_dim = getattr(config, "word_embed_proj_dim", None)
Tri Dao's avatar
Tri Dao committed
603
604
605
606
607
        embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim
        if word_embed_proj_dim is not None:
            self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs)
        else:
            self.project_out = None
608
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
609
            self.lm_head = nn.Linear(embed_dim, vocab_size, bias=lm_head_bias, **factory_kwargs)
610
611
        else:
            if ColumnParallelLinear is None:
Tri Dao's avatar
Tri Dao committed
612
                raise ImportError("fused_dense_lib is not installed")
613
            self.lm_head = ColumnParallelLinear(
Tri Dao's avatar
Tri Dao committed
614
615
616
617
618
619
                embed_dim,
                vocab_size,
                process_group,
                bias=lm_head_bias,
                sequence_parallel=getattr(config, "sequence_parallel", True),
                **factory_kwargs,
620
            )
Tri Dao's avatar
Tri Dao committed
621
        # Initialize weights and apply final processing
Tri Dao's avatar
Tri Dao committed
622
623
624
625
626
627
628
        self.apply(
            partial(
                _init_weights,
                n_layer=config.num_hidden_layers,
                initializer_range=config.initializer_range,
            )
        )
Tri Dao's avatar
Tri Dao committed
629
630
631
        self.tie_weights()

    def tie_weights(self):
Tri Dao's avatar
Tri Dao committed
632
633
        if self.tie_word_embeddings:
            self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight
634
        if self.process_group is not None:
635
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
636

637
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
Tri Dao's avatar
Tri Dao committed
638
639
640
        return self.transformer.allocate_inference_cache(
            batch_size, max_seqlen, dtype=dtype, **kwargs
        )
641

642
    def forward(self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0):
Tri Dao's avatar
Tri Dao committed
643
        """
644
        input_ids: (batch, seqlen) int tensor
Tri Dao's avatar
Tri Dao committed
645
646
        inference_params: for generation. Adapted from Megatron-LM (and Apex)
        https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
647
        num_last_tokens: if > 0, only return the logits for the last n tokens
Tri Dao's avatar
Tri Dao committed
648
        """
Kevin Hu's avatar
Kevin Hu committed
649
650
651
        assert (
            input_ids.ndim == 2
        ), f"Expected `input_ids` to have shape [b, slen], but got shape {input_ids.shape}"
652
        b, slen = input_ids.shape
Tri Dao's avatar
Tri Dao committed
653
654
655
        hidden_states = self.transformer(
            input_ids, position_ids=position_ids, inference_params=inference_params
        )
Tri Dao's avatar
Tri Dao committed
656
657
        if inference_params is not None:
            assert hidden_states.ndim == 3, "sequence_parallel is not supported in generation mode"
658
659
        if num_last_tokens > 0:
            hidden_states = hidden_states[:, -num_last_tokens:]
Tri Dao's avatar
Tri Dao committed
660
661
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
Tri Dao's avatar
Tri Dao committed
662
        lm_logits = self.lm_head(hidden_states)
663
664
665
        # During inference, we want the full logit for sampling
        if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
            lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
666
            lm_logits = rearrange(lm_logits, "(n b) ... d -> b ... (n d)", b=b)
Tri Dao's avatar
Tri Dao committed
667
        CausalLMOutput = namedtuple("CausalLMOutput", ["logits"])
Tri Dao's avatar
Tri Dao committed
668
        return CausalLMOutput(logits=lm_logits)
669

Tri Dao's avatar
Tri Dao committed
670
671
672
673
    def load_state_dict(self, state_dict, strict=True):
        # Remapping from our checkpoints that used a different ordering of layers in the block
        # Previous: Attn / MLP -> Dropout -> Add -> LN
        # Current: Dropout -> Add -> LN -> Attn / MLP
Tri Dao's avatar
Tri Dao committed
674
        if "transformer.ln_0.weight" in state_dict:
Tri Dao's avatar
Tri Dao committed
675
            n_layers = len(self.transformer.layers)
Tri Dao's avatar
Tri Dao committed
676
677
678
679
            ln_weight = state_dict.pop(f"transformer.layers.{n_layers - 1}.norm2.weight")
            ln_bias = state_dict.pop(f"transformer.layers.{n_layers - 1}.norm2.bias")
            state_dict["transformer.ln_f.weight"] = ln_weight
            state_dict["transformer.ln_f.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
680
            for l in reversed(range(n_layers)):
Tri Dao's avatar
Tri Dao committed
681
682
683
684
                ln_weight = state_dict.pop(f"transformer.layers.{l}.norm1.weight")
                ln_bias = state_dict.pop(f"transformer.layers.{l}.norm1.bias")
                state_dict[f"transformer.layers.{l}.norm2.weight"] = ln_weight
                state_dict[f"transformer.layers.{l}.norm2.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
685
                if l > 0:
Tri Dao's avatar
Tri Dao committed
686
687
688
689
690
691
692
693
                    ln_weight = state_dict.pop(f"transformer.layers.{l - 1}.norm2.weight")
                    ln_bias = state_dict.pop(f"transformer.layers.{l - 1}.norm2.bias")
                    state_dict[f"transformer.layers.{l}.norm1.weight"] = ln_weight
                    state_dict[f"transformer.layers.{l}.norm1.bias"] = ln_bias
            ln_weight = state_dict.pop("transformer.ln_0.weight")
            ln_bias = state_dict.pop("transformer.ln_0.bias")
            state_dict[f"transformer.layers.0.norm1.weight"] = ln_weight
            state_dict[f"transformer.layers.0.norm1.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
694
695
        return super().load_state_dict(state_dict, strict=strict)

696

Tri Dao's avatar
Tri Dao committed
697
698
699
def shard_state_dict_tp(state_dict, config, world_size, rank):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
700
701

    This function modifies state_dict in place.
Tri Dao's avatar
Tri Dao committed
702
    """
Tri Dao's avatar
Tri Dao committed
703
704
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
Tri Dao's avatar
Tri Dao committed
705
706
707
708
709
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

710
711
712
713
714
715
    n_head = config.n_head
    n_head_kv = getattr(config, "n_head_kv", n_head)

    embed_dim = config.hidden_size
    head_dim = embed_dim // n_head

Tri Dao's avatar
Tri Dao committed
716
    def shard_first_dim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
717
718
719
        if key in state_dict:
            x = state_dict[key]
            dim = x.shape[0] // world_size
Tri Dao's avatar
Tri Dao committed
720
            state_dict[key] = x[rank * dim : (rank + 1) * dim]
Tri Dao's avatar
Tri Dao committed
721

722
    def shard_last_dim(state_dict, key, multiple_of=1):
Tri Dao's avatar
Tri Dao committed
723
724
        if key in state_dict:
            x = state_dict[key]
725
726
727
728
729
730
            dim_each_rank = [
                get_dim_for_local_rank(x.size(-1), world_size, local_rank, multiple_of)
                for local_rank in range(world_size)
            ]
            beg, end = tuple(sum(dim_each_rank[:pos]) for pos in (rank, rank + 1))
            state_dict[key] = x[..., beg:end]
Tri Dao's avatar
Tri Dao committed
731

Tri Dao's avatar
Tri Dao committed
732
733
734
735
736
    def shard_gatedmlp_fc1_dim(state_dict, key):
        if key in state_dict:
            x = state_dict[key]
            dim = x.shape[0] // world_size // 2
            state_dict[key] = rearrange(
Tri Dao's avatar
Tri Dao committed
737
                rearrange(x, "(two o) ... -> two o ...", two=2)[:, rank * dim : (rank + 1) * dim],
Tri Dao's avatar
Tri Dao committed
738
                "two o ... -> (two o) ...",
Tri Dao's avatar
Tri Dao committed
739
740
            )

Tri Dao's avatar
Tri Dao committed
741
    def shard_qkv_headdim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
742
        if key in state_dict:
743
            n_head_each_rank = [
Tri Dao's avatar
Tri Dao committed
744
745
                get_dim_for_local_rank(n_head, world_size, local_rank)
                for local_rank in range(world_size)
746
747
            ]
            n_head_kv_each_rank = [
Tri Dao's avatar
Tri Dao committed
748
749
                get_dim_for_local_rank(n_head_kv, world_size, local_rank)
                for local_rank in range(world_size)
750
751
752
753
754
755
756
757
            ]

            beg_n_head = sum(n_head_each_rank[:rank])
            end_n_head = sum(n_head_each_rank[: rank + 1])

            beg_n_head_kv = sum(n_head_kv_each_rank[:rank])
            end_n_head_kv = sum(n_head_kv_each_rank[: rank + 1])

Tri Dao's avatar
Tri Dao committed
758
            if n_head_kv == n_head:
Tri Dao's avatar
Tri Dao committed
759
760
                x = rearrange(state_dict[key], "(three d) ... -> three d ...", three=3)
                state_dict[key] = rearrange(
Tri Dao's avatar
Tri Dao committed
761
762
                    x[:, beg_n_head * head_dim : end_n_head * head_dim],
                    "three d ... -> (three d) ...",
Tri Dao's avatar
Tri Dao committed
763
                )
Tri Dao's avatar
Tri Dao committed
764
            else:
Tri Dao's avatar
Tri Dao committed
765
766
767
768
769
770
771
772
                x = rearrange(
                    state_dict[key],
                    "(nheadqkv headdim) ... -> nheadqkv headdim ...",
                    nheadqkv=n_head + 2 * n_head_kv,
                )
                state_dict[key] = rearrange(
                    torch.cat(
                        [
773
                            x[beg_n_head:end_n_head],
Tri Dao's avatar
Tri Dao committed
774
775
776
777
778
779
780
781
                            x[n_head + beg_n_head_kv : n_head + end_n_head_kv],
                            x[
                                n_head
                                + n_head_kv
                                + beg_n_head_kv : n_head
                                + n_head_kv
                                + end_n_head_kv
                            ],
Tri Dao's avatar
Tri Dao committed
782
783
784
785
786
787
788
789
790
791
792
                        ],
                        dim=0,
                    ),
                    "nheadqkv headdim ... -> (nheadqkv headdim) ...",
                )

    shard_first_dim(state_dict, "transformer.embeddings.word_embeddings.weight")
    if "lm_head.weight" in state_dict:
        shard_first_dim(state_dict, "lm_head.weight")
    if "transformer.embeddings.position_embeddings.weight" in state_dict:
        shard_last_dim(state_dict, "transformer.embeddings.position_embeddings.weight")
Tri Dao's avatar
Tri Dao committed
793
    for i in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
794
795
        shard_qkv_headdim(state_dict, f"transformer.layers.{i}.mixer.Wqkv.weight")
        shard_qkv_headdim(state_dict, f"transformer.layers.{i}.mixer.Wqkv.bias")
796
797
798
        shard_last_dim(
            state_dict, f"transformer.layers.{i}.mixer.out_proj.weight", multiple_of=head_dim
        )
Tri Dao's avatar
Tri Dao committed
799
        if rank != 0:
Tri Dao's avatar
Tri Dao committed
800
            state_dict.pop(f"transformer.layers.{i}.mixer.out_proj.bias", None)
Tri Dao's avatar
Tri Dao committed
801
        if config.activation_function in ["glu", "swiglu", "geglu"]:
Tri Dao's avatar
Tri Dao committed
802
803
            shard_gatedmlp_fc1_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
            shard_gatedmlp_fc1_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.bias")
Tri Dao's avatar
Tri Dao committed
804
        else:
Tri Dao's avatar
Tri Dao committed
805
806
807
            shard_first_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
            shard_first_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.bias")
        shard_last_dim(state_dict, f"transformer.layers.{i}.mlp.fc2.weight")
Tri Dao's avatar
Tri Dao committed
808
        if rank != 0:
Tri Dao's avatar
Tri Dao committed
809
            state_dict.pop(f"transformer.layers.{i}.mlp.fc2.bias", None)
Tri Dao's avatar
Tri Dao committed
810
811
812
    return state_dict


813
814
815
def combine_state_dicts_tp(state_dicts: list[dict[str, torch.Tensor]], config: GPT2Config):
    """Convert the list of sharded state_dict of a GPT model with tensor parallel to
    the state_dict of a standard GPT model.
816
817

    This function is meant to be the "reverse" of shard_state_dict_tp.
818
819
820

    Precondition:
        - state_dicts should be ordered in the same way as the shards were created.
Tri Dao's avatar
Tri Dao committed
821
822
823
    """
    world_size = len(state_dicts)
    keys = state_dicts[0].keys()
Tri Dao's avatar
Tri Dao committed
824
825
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
Tri Dao's avatar
Tri Dao committed
826
827
828
829
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0
830
831
    assert config.hidden_size % config.n_head == 0
    headdim = config.hidden_size // config.n_head
Tri Dao's avatar
Tri Dao committed
832

Tri Dao's avatar
Tri Dao committed
833
    # Sometimes the word embeddings are sharded on the 0th dim, sometimes on the 1st dim.
Tri Dao's avatar
Tri Dao committed
834
835
    # vocab_size // world_size coordinates are nonzero.
    def combine_word_embeddings(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
836
837
        dim = 0 if state_dicts[0][key].shape[0] == vocab_size // world_size else 1
        state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
838
839

    def combine_dim(state_dicts, state_dict, key, dim=-1):
Tri Dao's avatar
Tri Dao committed
840
841
        if key in state_dict:
            state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
842
843

    def combine_qkv_headdim(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
844
        n_head = config.n_head
Tri Dao's avatar
Tri Dao committed
845
        n_head_kv = getattr(config, "n_head_kv", n_head)
Tri Dao's avatar
Tri Dao committed
846
        if key in state_dict:
Tri Dao's avatar
Tri Dao committed
847
            if n_head_kv == n_head:
Tri Dao's avatar
Tri Dao committed
848
849
850
851
                xs = [
                    rearrange(s[key], "(three d) ... -> three d ...", three=3) for s in state_dicts
                ]
                state_dict[key] = rearrange(torch.cat(xs, dim=1), "three d ... -> (three d) ...")
Tri Dao's avatar
Tri Dao committed
852
            else:
853
854
855
856
857
858
859
860
                n_head_each_rank = [
                    get_dim_for_local_rank(n_head, world_size, local_rank)
                    for local_rank in range(world_size)
                ]
                n_head_kv_each_rank = [
                    get_dim_for_local_rank(n_head_kv, world_size, local_rank)
                    for local_rank in range(world_size)
                ]
861
862
863
864
865
866
867
                xs = [
                    rearrange(
                        s[key],
                        "(nheadqkv headdim) ... -> nheadqkv headdim ...",
                        nheadqkv=rank_n_head + 2 * rank_n_head_kv,
                        headdim=headdim,
                    )
Kevin Hu's avatar
Kevin Hu committed
868
869
870
                    for s, rank_n_head, rank_n_head_kv in zip(
                        state_dicts, n_head_each_rank, n_head_kv_each_rank
                    )
871
                ]
Kevin Hu's avatar
Kevin Hu committed
872
                wq = torch.cat([x[: n_head_each_rank[rank]] for rank, x in enumerate(xs)], dim=0)
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
                wk = torch.cat(
                    [
                        x[
                            n_head_each_rank[rank] : n_head_each_rank[rank]
                            + n_head_kv_each_rank[rank]
                        ]
                        for rank, x in enumerate(xs)
                    ],
                    dim=0,
                )
                wv = torch.cat(
                    [
                        x[n_head_each_rank[rank] + n_head_kv_each_rank[rank] :]
                        for rank, x in enumerate(xs)
                    ],
                    dim=0,
                )
                wqkv = torch.cat(
                    [wq, wk, wv],
                    dim=0,
                )
Tri Dao's avatar
Tri Dao committed
894
                state_dict[key] = rearrange(
895
                    wqkv,
Tri Dao's avatar
Tri Dao committed
896
897
                    "nheadqkv headdim ... -> (nheadqkv headdim) ...",
                )
Tri Dao's avatar
Tri Dao committed
898
899
900

    def combine_gated_mlp(state_dicts, state_dict, key):
        if key in state_dict:
Tri Dao's avatar
Tri Dao committed
901
902
            xs = [rearrange(s[key], "(two d) ... -> two d ...", two=2) for s in state_dicts]
            state_dict[key] = rearrange(torch.cat(xs, dim=1), "two d ... -> (two d) ...")
Tri Dao's avatar
Tri Dao committed
903
904

    state_dict = state_dicts[0].copy()  # don't modify state_dict[0] inplace
Tri Dao's avatar
Tri Dao committed
905
906
907
908
909
910
911
912
913
914
915
916
917
918
    combine_word_embeddings(
        state_dicts, state_dict, "transformer.embeddings.word_embeddings.weight"
    )
    if "lm_head.weight" in state_dict:
        combine_word_embeddings(state_dicts, state_dict, "lm_head.weight")
    if "transformer.embeddings.position_embeddings.weight" in state_dict:
        combine_dim(
            state_dicts, state_dict, "transformer.embeddings.position_embeddings.weight", -1
        )
    mlp_combine_fn = (
        combine_gated_mlp
        if config.activation_function in ["glu", "swiglu", "geglu"]
        else partial(combine_dim, dim=0)
    )
Tri Dao's avatar
Tri Dao committed
919
    for i in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
920
921
922
923
924
925
        combine_qkv_headdim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.Wqkv.weight")
        combine_qkv_headdim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.Wqkv.bias")
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.out_proj.weight", -1)
        mlp_combine_fn(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc1.bias", 0)
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc2.weight", -1)
Tri Dao's avatar
Tri Dao committed
926
927
928
929
    return state_dict


def remap_state_dict_hf_gpt2(state_dict, config):
930
931
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
Tri Dao's avatar
Tri Dao committed
932
933
        return re.sub(r"^wpe.", "transformer.embeddings.position_embeddings.", key)

934
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
Tri Dao's avatar
Tri Dao committed
935
    word_embeddings = state_dict.pop("wte.weight")
936
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
937
938
939
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
940
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
941
    )
Tri Dao's avatar
Tri Dao committed
942
    state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
943
944

    # LayerNorm
Tri Dao's avatar
Tri Dao committed
945
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
946
947
        key = re.sub(r"^ln_f.(weight|bias)", r"transformer.ln_f.\1", key)
        key = re.sub(r"^h.(\d+).ln_(1|2).(weight|bias)", r"transformer.layers.\1.norm\2.\3", key)
Tri Dao's avatar
Tri Dao committed
948
        return key
Tri Dao's avatar
Tri Dao committed
949

Tri Dao's avatar
Tri Dao committed
950
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
951
952
953

    # MLP
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
954
955
956
957
958
        W1 = state_dict.pop(f"h.{d}.mlp.c_fc.weight")
        state_dict[f"transformer.layers.{d}.mlp.fc1.weight"] = W1.t()
        W2 = state_dict.pop(f"h.{d}.mlp.c_proj.weight")
        state_dict[f"transformer.layers.{d}.mlp.fc2.weight"] = W2.t()

959
    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
960
961
        key = re.sub(r"^h.(\d+).mlp.c_fc.bias", r"transformer.layers.\1.mlp.fc1.bias", key)
        key = re.sub(r"^h.(\d+).mlp.c_proj.bias", r"transformer.layers.\1.mlp.fc2.bias", key)
962
        return key
Tri Dao's avatar
Tri Dao committed
963

964
965
966
967
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
968
969
970
971
972
973
        state_dict.pop(f"h.{d}.attn.bias")  # We don't store this bias
        Wqkv = state_dict.pop(f"h.{d}.attn.c_attn.weight")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = Wqkv.t()
        Wout = state_dict.pop(f"h.{d}.attn.c_proj.weight")
        state_dict[f"transformer.layers.{d}.mixer.out_proj.weight"] = Wout.t()

974
    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
975
976
977
978
        key = re.sub(r"^h.(\d+).attn.c_attn.bias", r"transformer.layers.\1.mixer.Wqkv.bias", key)
        key = re.sub(
            r"^h.(\d+).attn.c_proj.bias", r"transformer.layers.\1.mixer.out_proj.bias", key
        )
979
        return key
Tri Dao's avatar
Tri Dao committed
980

981
982
983
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    return state_dict
984
985


Tri Dao's avatar
Tri Dao committed
986
987
def remap_state_dict_megatron(state_dict, config):
    def key_mapping_transformer(key):
Tri Dao's avatar
Tri Dao committed
988
989
        key = re.sub(r"^language_model.encoder.", "transformer.", key)
        key = re.sub(r"^language_model.", "transformer.", key)
Tri Dao's avatar
Tri Dao committed
990
        return key
Tri Dao's avatar
Tri Dao committed
991

Tri Dao's avatar
Tri Dao committed
992
    state_dict = OrderedDict((key_mapping_transformer(k), v) for k, v in state_dict.items())
993

Tri Dao's avatar
Tri Dao committed
994
995
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
Tri Dao's avatar
Tri Dao committed
996
997
        return re.sub(r"^wpe.", "transformer.embeddings.position_embeddings.", key)

Tri Dao's avatar
Tri Dao committed
998
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
Tri Dao's avatar
Tri Dao committed
999
    word_embeddings = state_dict.pop("transformer.embedding.word_embeddings.weight")
Tri Dao's avatar
Tri Dao committed
1000
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
1001
1002
1003
1004
1005
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
    )
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
Tri Dao's avatar
Tri Dao committed
1006
1007
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
Tri Dao's avatar
Tri Dao committed
1008
    state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
1009

Tri Dao's avatar
Tri Dao committed
1010
1011
    # LayerNorm
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        key = re.sub(r"^transformer.final_layernorm.(weight|bias)", r"transformer.ln_f.\1", key)
        key = re.sub(
            r"^transformer.layers.(\d+).input_layernorm.(weight|bias)",
            r"transformer.layers.\1.norm1.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).post_attention_layernorm.(weight|bias)",
            r"transformer.layers.\1.norm2.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1023
        return key
Tri Dao's avatar
Tri Dao committed
1024

Tri Dao's avatar
Tri Dao committed
1025
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
1026

Tri Dao's avatar
Tri Dao committed
1027
1028
    # MLP
    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
        key = re.sub(
            r"^transformer.layers.(\d+).mlp.dense_h_to_4h.(weight|bias)",
            r"transformer.layers.\1.mlp.fc1.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).mlp.dense_4h_to_h.(weight|bias)",
            r"transformer.layers.\1.mlp.fc2.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1039
        return key
Tri Dao's avatar
Tri Dao committed
1040

Tri Dao's avatar
Tri Dao committed
1041
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
1042

Tri Dao's avatar
Tri Dao committed
1043
1044
    # Attention
    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.rotary_emb.inv_freq",
            r"transformer.layers.\1.mixer.rotary_emb.inv_freq",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.query_key_value.(weight|bias)",
            r"transformer.layers.\1.mixer.Wqkv.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.dense.(weight|bias)",
            r"transformer.layers.\1.mixer.out_proj.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1060
        return key
Tri Dao's avatar
Tri Dao committed
1061

Tri Dao's avatar
Tri Dao committed
1062
1063
1064
1065
1066
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    # Megatron stores Wqkv as ((nheads 3 headdim), hidden_dim)
    # while we store Wqkv as ((3 nheads headdim), hidden_dim)
    headdim = config.hidden_size // config.num_attention_heads
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
1067
1068
1069
1070
1071
1072
        Wqkv = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.weight")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = rearrange(
            Wqkv,
            "(nheads three headdim) ... -> (three nheads headdim) ...",
            three=3,
            headdim=headdim,
Tri Dao's avatar
Tri Dao committed
1073
        )
Tri Dao's avatar
Tri Dao committed
1074
1075
1076
        bqkv = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.bias")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.bias"] = rearrange(
            bqkv, "(nheads three headdim) -> (three nheads headdim)", three=3, headdim=headdim
Tri Dao's avatar
Tri Dao committed
1077
        )
1078
1079

    return state_dict