test_modeling_tf_common.py 56.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
thomwolf's avatar
thomwolf committed
20
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import tempfile
22
import unittest
23
from importlib import import_module
24
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
25

26
27
from transformers import is_tf_available
from transformers.testing_utils import _tf_gpu_memory_limit, is_pt_tf_cross_test, require_tf, slow
28

Aymeric Augustin's avatar
Aymeric Augustin committed
29

30
if is_tf_available():
thomwolf's avatar
thomwolf committed
31
    import numpy as np
32
    import tensorflow as tf
33

34
    from transformers import (
35
36
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
37
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
38
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
39
        TF_MODEL_FOR_PRETRAINING_MAPPING,
40
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
41
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
42
43
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
44
45
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
46
    )
47

Julien Chaumond's avatar
Julien Chaumond committed
48
49
50
51
52
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
53
54
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
55
                )
Julien Plu's avatar
Julien Plu committed
56
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
57
58
59
60
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
61

62

thomwolf's avatar
thomwolf committed
63
64
65
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
66
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
67
68
69
70
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


71
72
@require_tf
class TFModelTesterMixin:
73

74
75
    model_tester = None
    all_model_classes = ()
76
    all_generative_model_classes = ()
77
    test_resize_embeddings = True
78
    test_head_masking = True
79
    is_encoder_decoder = False
80

Lysandre Debut's avatar
Lysandre Debut committed
81
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
82
83
        inputs_dict = copy.deepcopy(inputs_dict)

84
        if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
85
            inputs_dict = {
86
87
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
88
89
90
                else v
                for k, v in inputs_dict.items()
            }
91
92
93

        if return_labels:
            if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
94
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
95
            elif model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
96
97
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
98
            elif model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
99
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
100
101
            elif model_class in TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values():
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
102
103
104
105
            elif model_class in [
                *TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *TF_MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *TF_MODEL_FOR_MASKED_LM_MAPPING.values(),
106
                *TF_MODEL_FOR_PRETRAINING_MAPPING.values(),
107
108
109
110
111
                *TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
112
113
        return inputs_dict

114
115
    def test_initialization(self):
        pass
116

117
118
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
119

120
121
        for model_class in self.all_model_classes:
            model = model_class(config)
122
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
123

124
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
125
                model.save_pretrained(tmpdirname, saved_model=False)
126
                model = model_class.from_pretrained(tmpdirname)
127
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
128

129
                self.assert_outputs_same(after_outputs, outputs)
130

131
132
133
134
135
136
137
138
139
140
141
142
143
    def test_graph_mode(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            inputs = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            @tf.function
            def run_in_graph_mode():
                return model(inputs)

            outputs = run_in_graph_mode()
            self.assertIsNotNone(outputs)

Julien Plu's avatar
Julien Plu committed
144
145
146
147
148
149
150
151
152
153
154
155
156
    def test_xla_mode(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            inputs = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            @tf.function(experimental_compile=True)
            def run_in_graph_mode():
                return model(inputs)

            outputs = run_in_graph_mode()
            self.assertIsNotNone(outputs)

157
158
159
160
161
162
163
164
165
166
167
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
168
                    "input_ids",
169
170
171
172
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
173
174
175
176
177
178
                expected_arg_names.extend(
                    ["head_mask", "decoder_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" in arg_names
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
179
180

            else:
Julien Plu's avatar
Julien Plu committed
181
                expected_arg_names = ["input_ids"]
182
183
                self.assertListEqual(arg_names[:1], expected_arg_names)

Julien Plu's avatar
Julien Plu committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    def test_saved_model_creation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = False
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False

        model_class = self.all_model_classes[0]

        class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
        model = model_class(config)

        model(class_inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
201
            saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
Julien Plu's avatar
Julien Plu committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            self.assertTrue(os.path.exists(saved_model_dir))

    @slow
    def test_saved_model_creation_extended(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        if hasattr(config, "use_cache"):
            config.use_cache = True

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            model(class_inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
221
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
Julien Plu's avatar
Julien Plu committed
222
223
                self.assertTrue(os.path.exists(saved_model_dir))

Julien Plu's avatar
Julien Plu committed
224
225
226
227
    @slow
    def test_saved_model_with_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
Julien Plu's avatar
Julien Plu committed
228
229
230
231
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False
Julien Plu's avatar
Julien Plu committed
232
233

        for model_class in self.all_model_classes:
Lysandre Debut's avatar
Lysandre Debut committed
234
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Julien Plu's avatar
Julien Plu committed
235
            model = model_class(config)
Lysandre Debut's avatar
Lysandre Debut committed
236
            num_out = len(model(class_inputs_dict))
Julien Plu's avatar
Julien Plu committed
237
238

            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
239
                model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
240
241
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
                model = tf.keras.models.load_model(saved_model_dir)
Lysandre Debut's avatar
Lysandre Debut committed
242
                outputs = model(class_inputs_dict)
243
244

                if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
245
                    output = outputs["encoder_hidden_states"]
246
                else:
Julien Plu's avatar
Julien Plu committed
247
                    output = outputs["hidden_states"]
248

Julien Plu's avatar
Julien Plu committed
249
                self.assertEqual(len(outputs), num_out)
Julien Plu's avatar
Julien Plu committed
250

Lysandre Debut's avatar
Lysandre Debut committed
251
252
253
                expected_num_layers = getattr(
                    self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
                )
Julien Plu's avatar
Julien Plu committed
254
255

                self.assertEqual(len(output), expected_num_layers)
Julien Plu's avatar
Julien Plu committed
256
                self.assertListEqual(
Julien Plu's avatar
Julien Plu committed
257
                    list(output[0].shape[-2:]),
Lysandre's avatar
Lysandre committed
258
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
Julien Plu's avatar
Julien Plu committed
259
260
261
262
263
264
                )

    @slow
    def test_saved_model_with_attentions_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
Julien Plu's avatar
Julien Plu committed
265
266
267
268
        config.output_hidden_states = False

        if hasattr(config, "use_cache"):
            config.use_cache = False
Lysandre Debut's avatar
Lysandre Debut committed
269
270
271

        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Julien Plu's avatar
Julien Plu committed
272
273

        for model_class in self.all_model_classes:
Lysandre Debut's avatar
Lysandre Debut committed
274
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Julien Plu's avatar
Julien Plu committed
275
            model = model_class(config)
Lysandre Debut's avatar
Lysandre Debut committed
276
            num_out = len(model(class_inputs_dict))
Julien Plu's avatar
Julien Plu committed
277
278

            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
279
                model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
280
281
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
                model = tf.keras.models.load_model(saved_model_dir)
Lysandre Debut's avatar
Lysandre Debut committed
282
                outputs = model(class_inputs_dict)
283
284

                if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
285
                    output = outputs["encoder_attentions"]
286
                else:
Julien Plu's avatar
Julien Plu committed
287
                    output = outputs["attentions"]
288

Julien Plu's avatar
Julien Plu committed
289
                self.assertEqual(len(outputs), num_out)
Julien Plu's avatar
Julien Plu committed
290
                self.assertEqual(len(output), self.model_tester.num_hidden_layers)
Julien Plu's avatar
Julien Plu committed
291
                self.assertListEqual(
Julien Plu's avatar
Julien Plu committed
292
                    list(output[0].shape[-3:]),
Julien Plu's avatar
Julien Plu committed
293
294
295
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )

296
297
298
299
300
301
302
303
304
305
306
307
308
309
    def test_mixed_precision(self):
        tf.keras.mixed_precision.experimental.set_policy("mixed_float16")

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            outputs = model(class_inputs_dict)

            self.assertIsNotNone(outputs)

        tf.keras.mixed_precision.experimental.set_policy("float32")

310
311
312
313
314
315
316
317
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
318
            if module_member_name.endswith("MainLayer")
319
            for module_member in (getattr(module, module_member_name),)
320
321
322
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
323
324
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
325
326
327
328
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
329
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
330
331
332
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
333

334
335
336
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
337

338
339
340
341
342
343
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
344
345
346
347
348
349
350
351
352
353
354
355
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
356
357
358
359
360
361
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
362
363
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
364
        elif isinstance(after_outputs, dict):
365
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
366
367
        else:
            out_1 = after_outputs[0].numpy()
368
        out_2 = outputs[0].numpy()
369
        self.assertEqual(out_1.shape, out_2.shape)
370
371
372
373
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
374

375
    @is_pt_tf_cross_test
376
    def test_pt_tf_model_equivalence(self):
thomwolf's avatar
thomwolf committed
377

378
        import torch
379

380
        import transformers
thomwolf's avatar
thomwolf committed
381

382
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
383

384
        for model_class in self.all_model_classes:
385
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
386
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
387

388
            config.output_hidden_states = True
389

390
391
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
392

393
            # Check we can load pt model in tf and vice-versa with model => model functions
394

395
396
397
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
398
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
399

400
401
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
402
403
404
405
406
407
408
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    pt_inputs_dict[name] = key
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

409
410
411
412
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

413
414
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
415
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
416
417
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
418

419
420
421
422
423
424
425
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
426

427
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
428
            self.assertLessEqual(max_diff, 4e-2)
429
430

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
431
            with tempfile.TemporaryDirectory() as tmpdirname:
432
433
434
435
436
437
438
439
440
441
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
442
443
444
445
446
447
448
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    key = np.array(key, dtype=bool)
                    pt_inputs_dict[name] = torch.from_numpy(key).to(torch.long)
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)
449
450
451
452
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

453
454
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
455
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
456
457
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
458
459
460
461
462
463
464
465
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

466
            max_diff = np.amax(np.abs(tfo - pto))
sgugger's avatar
sgugger committed
467
            self.assertLessEqual(max_diff, 4e-2)
468

469
470
    def test_train_pipeline_custom_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
471
472
473
474
475
        # head_mask and decoder_head_mask has different shapes than other input args
        if "head_mask" in inputs_dict:
            del inputs_dict["head_mask"]
        if "decoder_head_mask" in inputs_dict:
            del inputs_dict["decoder_head_mask"]
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
            if module_member_name.endswith("MainLayer")
            for module_member in (getattr(module, module_member_name),)
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
        )

        for main_layer_class in tf_main_layer_classes:
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared")
                config.use_cache = False
                main_layer = main_layer_class(config, embed_tokens=shared)
                del inputs_dict["use_cache"]
            else:
                main_layer = main_layer_class(config)

            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }

            if hasattr(self.model_tester, "num_labels"):
                num_labels = self.model_tester.num_labels
            else:
                num_labels = 2

            X = tf.data.Dataset.from_tensor_slices(
Julien Plu's avatar
Julien Plu committed
509
                (inputs_dict, np.ones((self.model_tester.batch_size, self.model_tester.seq_length, num_labels, 1)))
510
511
512
513
514
515
            ).batch(1)

            hidden_states = main_layer(symbolic_inputs)[0]
            outputs = tf.keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states)
            model = tf.keras.models.Model(inputs=symbolic_inputs, outputs=[outputs])

Julien Plu's avatar
Julien Plu committed
516
            model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["binary_accuracy"])
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
            model.fit(X, epochs=1)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
                assert isinstance(model, tf.keras.Model)
                model(inputs_dict)

537
538
    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
539
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
540
541
542
543
544
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
545
546
547
            if self.is_encoder_decoder:
                input_ids = {
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
548
549
550
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
551
                    ),
Julien Plu's avatar
Julien Plu committed
552
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
553
554
                }
            elif model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
Julien Plu's avatar
Julien Plu committed
555
                input_ids = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
556
            else:
Julien Plu's avatar
Julien Plu committed
557
                input_ids = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
558

559
560
            # Prepare our model
            model = model_class(config)
561
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
562
            # Let's load it from the disk to be sure we can use pretrained weights
563
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
564
                model.save_pretrained(tmpdirname, saved_model=False)
565
566
567
568
569
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

570
            # Add a dense layer on top to test integration with other keras modules
571
572
573
574
575
576
577
578
579
580
581
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
582
583
584
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
585

586
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
587
            input_ids = inputs_keywords.pop("input_ids", None)
588
589
590
591
592
593
594
595
            outputs_keywords = model(input_ids, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
596
        config.return_dict = True
597
598
599
600
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
601

Julien Plu's avatar
Julien Plu committed
602
603
604
605
606
607
608
609
610
611
612
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
            self.assertEqual(out_len % 2, 0)
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
613
614
615
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
616
617
618
619
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
620
            )
Julien Plu's avatar
Julien Plu committed
621
622
623
624
625
626
627

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["use_cache"] = False
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
628
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
629
630
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
631

632
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
633
634
635
636
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
637

638
639
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
640
            config.output_attentions = True
641
            model = model_class(config)
642
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
643
644
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
645
646
647

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
648
649
            config.output_hidden_states = True
            model = model_class(config)
650
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
651

652
653
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
654
            check_encoder_attentions_output(outputs)
655

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
            else:
                check_attentions_validity(outputs.attentions)

725
726
727
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
728
        def check_hidden_states_output(config, inputs_dict, model_class):
729
            model = model_class(config)
730
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
731
732
733
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
734

Julien Plu's avatar
Julien Plu committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
758

Joseph Liu's avatar
Joseph Liu committed
759
760
761
762
763
764
765
766
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

767
768
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
769
770
771
772
773
        list_lm_models = (
            list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.values())
            + list(TF_MODEL_FOR_MASKED_LM_MAPPING.values())
            + list(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values())
        )
774
775
776

        for model_class in self.all_model_classes:
            model = model_class(config)
777
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
778
779

            if model_class in list_lm_models:
780
                x = model.get_output_embeddings()
781
                assert isinstance(x, tf.keras.layers.Layer)
782
783
784
785
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
786
            else:
787
                x = model.get_output_embeddings()
788
                assert x is None
789
790
                name = model.get_bias()
                assert name is None
791
792
793
794
795
796

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
797
            first, second = (
798
799
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
800
            )
801
802
803
804
805
806
807
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}",
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

863
864
865
866
867
868
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

869
870
871
872
873
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
874
                encoder_input_ids = inputs["input_ids"]
875
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
876
                del inputs["input_ids"]
877
878
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
879
            if not self.is_encoder_decoder:
880
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
881
            else:
882
883
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
884

885
            model(inputs)
886

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

            model(inputs_np)

908
909
910
911
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
912
913

        def _get_word_embedding_weight(model, embedding_layer):
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            model(model.dummy_inputs)

            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            return None
933

934
935
936
937
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
938
939
940
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
941
                # reshape the embeddings
942
943
944
945
946
947
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
948
                assert_size = size if size is not None else config.vocab_size
949
950
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

951
952
                # check that weights remain the same after resizing
                models_equal = True
953
954
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
955
956
957
                        models_equal = False
                self.assertTrue(models_equal)

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[0], assert_size)

                        models_equal = True
                        for p1, p2 in zip(old_weight.value(), new_weight.value()):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

978
    def test_lm_head_model_random_no_beam_search_generate(self):
979
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
980
        input_ids = inputs_dict["input_ids"]
981

982
        # iterate over all generative models
983
984
985
986
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
987
                # if bos token id is not defined mobel needs input_ids
988
                with self.assertRaises(AssertionError):
989
                    model.generate(do_sample=True, max_length=5)
990
                # num_return_sequences = 1
991
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
992
            else:
993
                # num_return_sequences = 1
994
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
995
996

            with self.assertRaises(AssertionError):
997
                # generating multiple sequences when no beam search generation
998
999
1000
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

1001
1002
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
1003
1004

            # check bad words tokens language generation
1005
1006
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1007
            output_tokens = model.generate(
1008
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
1009
            )
1010
            # only count generated tokens
1011
1012
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
1013

1014
1015
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
1016
        input_ids = inputs_dict["input_ids"]
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1033
1034
1035
1036
1037
1038
1039
1040
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1041
1042
1043
1044
1045
1046
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1047
            output_tokens = model.generate(
1048
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1049
            )
1050
            # only count generated tokens
1051
1052
1053
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1054
1055
1056
1057
1058
1059
1060
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1061
1062
1063
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
1064
1065
                loss_size = tf.size(added_label)

1066
1067
1068
1069
1070
                if model.__class__ in TF_MODEL_FOR_CAUSAL_LM_MAPPING.values():
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

1071
1072
1073
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")
1074

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
                loss = model(input_ids, **prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
1088
1089
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
1090
1091

                # Create a dictionary holding the location of the tensors in the tuple
1092
                tuple_index_mapping = {0: "input_ids"}
1093
                for label_key in label_keys:
1094
                    label_key_index = signature_names.index(label_key)
1095
1096
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
1097
1098
1099
1100
1101
1102
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
1103
1104

                for index, value in sorted_tuple_index_mapping:
1105
1106
                    list_input[index] = prepared_for_class[value]

1107
1108
1109
                tuple_input = tuple(list_input)

                # Send to model
1110
1111
                loss = model(tuple_input[:-1])[0]

1112
1113
                self.assertEqual(loss.shape, [loss_size])

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1132
    def _check_generated_ids(self, output_ids):
1133
1134
1135
1136
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1149

thomwolf's avatar
thomwolf committed
1150
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1163
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1164
1165

    return output
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243


@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1244
1245
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1257
1258
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1259
1260
1261
1262
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)