test_modeling_tf_common.py 55.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
thomwolf's avatar
thomwolf committed
20
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import tempfile
22
import unittest
23
from importlib import import_module
24
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
25

26
27
from transformers import is_tf_available
from transformers.testing_utils import _tf_gpu_memory_limit, is_pt_tf_cross_test, require_tf, slow
28

Aymeric Augustin's avatar
Aymeric Augustin committed
29

30
if is_tf_available():
thomwolf's avatar
thomwolf committed
31
    import numpy as np
32
    import tensorflow as tf
33

34
    from transformers import (
35
36
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
37
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
38
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
39
        TF_MODEL_FOR_PRETRAINING_MAPPING,
40
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
41
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
42
43
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
44
45
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
46
    )
47

Julien Chaumond's avatar
Julien Chaumond committed
48
49
50
51
52
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
53
54
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
55
                )
Julien Plu's avatar
Julien Plu committed
56
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
57
58
59
60
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
61

62

thomwolf's avatar
thomwolf committed
63
64
65
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
66
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
67
68
69
70
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


71
72
@require_tf
class TFModelTesterMixin:
73

74
75
    model_tester = None
    all_model_classes = ()
76
    all_generative_model_classes = ()
77
    test_resize_embeddings = True
78
    test_head_masking = True
79
    is_encoder_decoder = False
80

Lysandre Debut's avatar
Lysandre Debut committed
81
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
82
83
        inputs_dict = copy.deepcopy(inputs_dict)

84
        if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
85
            inputs_dict = {
86
87
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
88
89
90
                else v
                for k, v in inputs_dict.items()
            }
91
92
93

        if return_labels:
            if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
94
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
95
            elif model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
96
97
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
98
            elif model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
99
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
100
101
            elif model_class in TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values():
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
102
103
104
105
            elif model_class in [
                *TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *TF_MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *TF_MODEL_FOR_MASKED_LM_MAPPING.values(),
106
                *TF_MODEL_FOR_PRETRAINING_MAPPING.values(),
107
108
109
110
111
                *TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
112
113
        return inputs_dict

114
115
    def test_initialization(self):
        pass
116

117
118
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
119

120
121
        for model_class in self.all_model_classes:
            model = model_class(config)
122
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
123

124
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
125
                model.save_pretrained(tmpdirname, saved_model=False)
126
                model = model_class.from_pretrained(tmpdirname)
127
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
128

129
                self.assert_outputs_same(after_outputs, outputs)
130

131
132
133
134
135
136
137
138
139
140
141
142
143
    def test_graph_mode(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            inputs = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            @tf.function
            def run_in_graph_mode():
                return model(inputs)

            outputs = run_in_graph_mode()
            self.assertIsNotNone(outputs)

144
145
146
147
148
149
150
151
152
153
154
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
155
                    "input_ids",
156
157
158
159
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
160
161
162
163
164
165
                expected_arg_names.extend(
                    ["head_mask", "decoder_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" in arg_names
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
166
167

            else:
Julien Plu's avatar
Julien Plu committed
168
                expected_arg_names = ["input_ids"]
169
170
                self.assertListEqual(arg_names[:1], expected_arg_names)

Julien Plu's avatar
Julien Plu committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    def test_saved_model_creation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = False
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False

        model_class = self.all_model_classes[0]

        class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
        model = model_class(config)

        model(class_inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
188
            saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
Julien Plu's avatar
Julien Plu committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
            self.assertTrue(os.path.exists(saved_model_dir))

    @slow
    def test_saved_model_creation_extended(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        if hasattr(config, "use_cache"):
            config.use_cache = True

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            model(class_inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
208
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
Julien Plu's avatar
Julien Plu committed
209
210
                self.assertTrue(os.path.exists(saved_model_dir))

Julien Plu's avatar
Julien Plu committed
211
212
213
214
    @slow
    def test_saved_model_with_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
Julien Plu's avatar
Julien Plu committed
215
216
217
218
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False
Julien Plu's avatar
Julien Plu committed
219
220

        for model_class in self.all_model_classes:
Lysandre Debut's avatar
Lysandre Debut committed
221
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Julien Plu's avatar
Julien Plu committed
222
            model = model_class(config)
Lysandre Debut's avatar
Lysandre Debut committed
223
            num_out = len(model(class_inputs_dict))
Julien Plu's avatar
Julien Plu committed
224
225

            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
226
                model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
227
228
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
                model = tf.keras.models.load_model(saved_model_dir)
Lysandre Debut's avatar
Lysandre Debut committed
229
                outputs = model(class_inputs_dict)
230
231

                if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
232
                    output = outputs["encoder_hidden_states"]
233
                else:
Julien Plu's avatar
Julien Plu committed
234
                    output = outputs["hidden_states"]
235

Julien Plu's avatar
Julien Plu committed
236
                self.assertEqual(len(outputs), num_out)
Julien Plu's avatar
Julien Plu committed
237

Lysandre Debut's avatar
Lysandre Debut committed
238
239
240
                expected_num_layers = getattr(
                    self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
                )
Julien Plu's avatar
Julien Plu committed
241
242

                self.assertEqual(len(output), expected_num_layers)
Julien Plu's avatar
Julien Plu committed
243
                self.assertListEqual(
Julien Plu's avatar
Julien Plu committed
244
                    list(output[0].shape[-2:]),
Lysandre's avatar
Lysandre committed
245
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
Julien Plu's avatar
Julien Plu committed
246
247
248
249
250
251
                )

    @slow
    def test_saved_model_with_attentions_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
Julien Plu's avatar
Julien Plu committed
252
253
254
255
        config.output_hidden_states = False

        if hasattr(config, "use_cache"):
            config.use_cache = False
Lysandre Debut's avatar
Lysandre Debut committed
256
257
258

        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Julien Plu's avatar
Julien Plu committed
259
260

        for model_class in self.all_model_classes:
Lysandre Debut's avatar
Lysandre Debut committed
261
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Julien Plu's avatar
Julien Plu committed
262
            model = model_class(config)
Lysandre Debut's avatar
Lysandre Debut committed
263
            num_out = len(model(class_inputs_dict))
Julien Plu's avatar
Julien Plu committed
264
265

            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
266
                model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
267
268
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
                model = tf.keras.models.load_model(saved_model_dir)
Lysandre Debut's avatar
Lysandre Debut committed
269
                outputs = model(class_inputs_dict)
270
271

                if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
272
                    output = outputs["encoder_attentions"]
273
                else:
Julien Plu's avatar
Julien Plu committed
274
                    output = outputs["attentions"]
275

Julien Plu's avatar
Julien Plu committed
276
                self.assertEqual(len(outputs), num_out)
Julien Plu's avatar
Julien Plu committed
277
                self.assertEqual(len(output), self.model_tester.num_hidden_layers)
Julien Plu's avatar
Julien Plu committed
278
                self.assertListEqual(
Julien Plu's avatar
Julien Plu committed
279
                    list(output[0].shape[-3:]),
Julien Plu's avatar
Julien Plu committed
280
281
282
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )

283
284
285
286
287
288
289
290
291
292
293
294
295
296
    def test_mixed_precision(self):
        tf.keras.mixed_precision.experimental.set_policy("mixed_float16")

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            outputs = model(class_inputs_dict)

            self.assertIsNotNone(outputs)

        tf.keras.mixed_precision.experimental.set_policy("float32")

297
298
299
300
301
302
303
304
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
305
            if module_member_name.endswith("MainLayer")
306
            for module_member in (getattr(module, module_member_name),)
307
308
309
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
310
311
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
312
313
314
315
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
316
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
317
318
319
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
320

321
322
323
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
324

325
326
327
328
329
330
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
331
332
333
334
335
336
337
338
339
340
341
342
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
343
344
345
346
347
348
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
349
350
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
351
        elif isinstance(after_outputs, dict):
352
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
353
354
        else:
            out_1 = after_outputs[0].numpy()
355
        out_2 = outputs[0].numpy()
356
        self.assertEqual(out_1.shape, out_2.shape)
357
358
359
360
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
361

362
    @is_pt_tf_cross_test
363
    def test_pt_tf_model_equivalence(self):
thomwolf's avatar
thomwolf committed
364

365
        import torch
366

367
        import transformers
thomwolf's avatar
thomwolf committed
368

369
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
370

371
        for model_class in self.all_model_classes:
372
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
373
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
374

375
            config.output_hidden_states = True
376

377
378
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
379

380
            # Check we can load pt model in tf and vice-versa with model => model functions
381

382
383
384
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
385
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
386

387
388
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
389
390
391
392
393
394
395
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    pt_inputs_dict[name] = key
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

396
397
398
399
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

400
401
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
402
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
403
404
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
405

406
407
408
409
410
411
412
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
413

414
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
415
            self.assertLessEqual(max_diff, 4e-2)
416
417

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
418
            with tempfile.TemporaryDirectory() as tmpdirname:
419
420
421
422
423
424
425
426
427
428
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
429
430
431
432
433
434
435
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    key = np.array(key, dtype=bool)
                    pt_inputs_dict[name] = torch.from_numpy(key).to(torch.long)
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)
436
437
438
439
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

440
441
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
442
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
443
444
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
445
446
447
448
449
450
451
452
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

453
            max_diff = np.amax(np.abs(tfo - pto))
sgugger's avatar
sgugger committed
454
            self.assertLessEqual(max_diff, 4e-2)
455

456
457
    def test_train_pipeline_custom_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
458
459
460
461
462
        # head_mask and decoder_head_mask has different shapes than other input args
        if "head_mask" in inputs_dict:
            del inputs_dict["head_mask"]
        if "decoder_head_mask" in inputs_dict:
            del inputs_dict["decoder_head_mask"]
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
            if module_member_name.endswith("MainLayer")
            for module_member in (getattr(module, module_member_name),)
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
        )

        for main_layer_class in tf_main_layer_classes:
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared")
                config.use_cache = False
                main_layer = main_layer_class(config, embed_tokens=shared)
                del inputs_dict["use_cache"]
            else:
                main_layer = main_layer_class(config)

            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }

            if hasattr(self.model_tester, "num_labels"):
                num_labels = self.model_tester.num_labels
            else:
                num_labels = 2

            X = tf.data.Dataset.from_tensor_slices(
Julien Plu's avatar
Julien Plu committed
496
                (inputs_dict, np.ones((self.model_tester.batch_size, self.model_tester.seq_length, num_labels, 1)))
497
498
499
500
501
502
            ).batch(1)

            hidden_states = main_layer(symbolic_inputs)[0]
            outputs = tf.keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states)
            model = tf.keras.models.Model(inputs=symbolic_inputs, outputs=[outputs])

Julien Plu's avatar
Julien Plu committed
503
            model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["binary_accuracy"])
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
            model.fit(X, epochs=1)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
                assert isinstance(model, tf.keras.Model)
                model(inputs_dict)

524
525
    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
526
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
527
528
529
530
531
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
532
533
534
            if self.is_encoder_decoder:
                input_ids = {
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
535
536
537
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
538
                    ),
Julien Plu's avatar
Julien Plu committed
539
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
540
541
                }
            elif model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
Julien Plu's avatar
Julien Plu committed
542
                input_ids = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
543
            else:
Julien Plu's avatar
Julien Plu committed
544
                input_ids = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
545

546
547
            # Prepare our model
            model = model_class(config)
548
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
549
            # Let's load it from the disk to be sure we can use pretrained weights
550
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
551
                model.save_pretrained(tmpdirname, saved_model=False)
552
553
554
555
556
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

557
            # Add a dense layer on top to test integration with other keras modules
558
559
560
561
562
563
564
565
566
567
568
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
569
570
571
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
572

573
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
574
            input_ids = inputs_keywords.pop("input_ids", None)
575
576
577
578
579
580
581
582
            outputs_keywords = model(input_ids, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
583
        config.return_dict = True
584
585
586
587
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
588

Julien Plu's avatar
Julien Plu committed
589
590
591
592
593
594
595
596
597
598
599
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
            self.assertEqual(out_len % 2, 0)
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
600
601
602
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
603
604
605
606
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
607
            )
Julien Plu's avatar
Julien Plu committed
608
609
610
611
612
613
614

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["use_cache"] = False
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
615
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
616
617
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
618

619
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
620
621
622
623
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
624

625
626
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
627
            config.output_attentions = True
628
            model = model_class(config)
629
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
630
631
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
632
633
634

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
635
636
            config.output_hidden_states = True
            model = model_class(config)
637
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
638

639
640
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
641
            check_encoder_attentions_output(outputs)
642

643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
            else:
                check_attentions_validity(outputs.attentions)

712
713
714
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
715
        def check_hidden_states_output(config, inputs_dict, model_class):
716
            model = model_class(config)
717
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
718
719
720
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
721

Julien Plu's avatar
Julien Plu committed
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
745

Joseph Liu's avatar
Joseph Liu committed
746
747
748
749
750
751
752
753
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

754
755
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
756
757
758
759
760
        list_lm_models = (
            list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.values())
            + list(TF_MODEL_FOR_MASKED_LM_MAPPING.values())
            + list(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values())
        )
761
762
763

        for model_class in self.all_model_classes:
            model = model_class(config)
764
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
765
766

            if model_class in list_lm_models:
767
                x = model.get_output_embeddings()
768
                assert isinstance(x, tf.keras.layers.Layer)
769
770
771
772
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
773
            else:
774
                x = model.get_output_embeddings()
775
                assert x is None
776
777
                name = model.get_bias()
                assert name is None
778
779
780
781
782
783

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
784
            first, second = (
785
786
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
787
            )
788
789
790
791
792
793
794
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}",
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

850
851
852
853
854
855
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

856
857
858
859
860
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
861
                encoder_input_ids = inputs["input_ids"]
862
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
863
                del inputs["input_ids"]
864
865
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
866
            if not self.is_encoder_decoder:
867
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
868
            else:
869
870
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
871

872
            model(inputs)
873

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

            model(inputs_np)

895
896
897
898
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
899
900

        def _get_word_embedding_weight(model, embedding_layer):
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            model(model.dummy_inputs)

            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            return None
920

921
922
923
924
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
925
926
927
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
928
                # reshape the embeddings
929
930
931
932
933
934
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
935
                assert_size = size if size is not None else config.vocab_size
936
937
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

938
939
                # check that weights remain the same after resizing
                models_equal = True
940
941
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
942
943
944
                        models_equal = False
                self.assertTrue(models_equal)

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[0], assert_size)

                        models_equal = True
                        for p1, p2 in zip(old_weight.value(), new_weight.value()):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

965
    def test_lm_head_model_random_no_beam_search_generate(self):
966
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
967
        input_ids = inputs_dict["input_ids"]
968

969
        # iterate over all generative models
970
971
972
973
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
974
                # if bos token id is not defined mobel needs input_ids
975
                with self.assertRaises(AssertionError):
976
                    model.generate(do_sample=True, max_length=5)
977
                # num_return_sequences = 1
978
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
979
            else:
980
                # num_return_sequences = 1
981
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
982
983

            with self.assertRaises(AssertionError):
984
                # generating multiple sequences when no beam search generation
985
986
987
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

988
989
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
990
991

            # check bad words tokens language generation
992
993
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
994
            output_tokens = model.generate(
995
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
996
            )
997
            # only count generated tokens
998
999
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
1000

1001
1002
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
1003
        input_ids = inputs_dict["input_ids"]
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1020
1021
1022
1023
1024
1025
1026
1027
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1028
1029
1030
1031
1032
1033
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1034
            output_tokens = model.generate(
1035
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1036
            )
1037
            # only count generated tokens
1038
1039
1040
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1041
1042
1043
1044
1045
1046
1047
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1048
1049
1050
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
1051
1052
                loss_size = tf.size(added_label)

1053
1054
1055
1056
1057
                if model.__class__ in TF_MODEL_FOR_CAUSAL_LM_MAPPING.values():
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

1058
1059
1060
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")
1061

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
                loss = model(input_ids, **prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
1075
1076
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
1077
1078

                # Create a dictionary holding the location of the tensors in the tuple
1079
                tuple_index_mapping = {0: "input_ids"}
1080
                for label_key in label_keys:
1081
                    label_key_index = signature_names.index(label_key)
1082
1083
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
1084
1085
1086
1087
1088
1089
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
1090
1091

                for index, value in sorted_tuple_index_mapping:
1092
1093
                    list_input[index] = prepared_for_class[value]

1094
1095
1096
                tuple_input = tuple(list_input)

                # Send to model
1097
1098
                loss = model(tuple_input[:-1])[0]

1099
1100
                self.assertEqual(loss.shape, [loss_size])

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1119
    def _check_generated_ids(self, output_ids):
1120
1121
1122
1123
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1136

thomwolf's avatar
thomwolf committed
1137
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1150
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1151
1152

    return output
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230


@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1231
1232
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1244
1245
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1246
1247
1248
1249
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)