test_modeling_tf_common.py 42.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
thomwolf's avatar
thomwolf committed
20
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import tempfile
22
import unittest
23
from importlib import import_module
24
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
25

26
from transformers import is_tf_available, is_torch_available
Julien Plu's avatar
Julien Plu committed
27
from transformers.testing_utils import _tf_gpu_memory_limit, require_tf, slow
28

Aymeric Augustin's avatar
Aymeric Augustin committed
29

30
if is_tf_available():
thomwolf's avatar
thomwolf committed
31
    import numpy as np
32
    import tensorflow as tf
33

34
    from transformers import (
35
36
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
37
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
38
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
39
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
40
41
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
42
43
44
        TFAdaptiveEmbedding,
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
45
    )
46

Julien Chaumond's avatar
Julien Chaumond committed
47
48
49
50
51
52
53
54
55
56
57
58
59
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
                tf.config.experimental.set_virtual_device_configuration(
                    gpu, [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
                )
                logical_gpus = tf.config.experimental.list_logical_devices("GPU")
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
60

61

thomwolf's avatar
thomwolf committed
62
63
64
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
65
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
66
67
68
69
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


70
71
@require_tf
class TFModelTesterMixin:
72

73
74
    model_tester = None
    all_model_classes = ()
75
    all_generative_model_classes = ()
76
77
78
79
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    is_encoder_decoder = False
80

81
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
82
83
        inputs_dict = copy.deepcopy(inputs_dict)

84
        if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
85
            inputs_dict = {
86
87
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
88
89
90
                else v
                for k, v in inputs_dict.items()
            }
91
92
93

        if return_labels:
            if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
94
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
95
            elif model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
96
97
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
98
            elif model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
99
100
101
102
103
104
105
106
107
108
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
            elif model_class in [
                *TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *TF_MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *TF_MODEL_FOR_MASKED_LM_MAPPING.values(),
                *TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
109
110
        return inputs_dict

111
112
113
    def test_initialization(self):
        pass
        # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
114

115
116
117
118
119
120
121
        # configs_no_init = _config_zero_init(config)
        # for model_class in self.all_model_classes:
        #     model = model_class(config=configs_no_init)
        #     for name, param in model.named_parameters():
        #         if param.requires_grad:
        #             self.assertIn(param.data.mean().item(), [0.0, 1.0],
        #             msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
122

123
124
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
125

126
127
        for model_class in self.all_model_classes:
            model = model_class(config)
128
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
129

130
            with tempfile.TemporaryDirectory() as tmpdirname:
131
132
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
133
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
134

135
                self.assert_outputs_same(after_outputs, outputs)
136

Julien Plu's avatar
Julien Plu committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    @slow
    def test_saved_model_with_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True

        for model_class in self.all_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            num_out = len(model(inputs_dict))
            model._saved_model_inputs_spec = None
            model._set_save_spec(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                tf.saved_model.save(model, tmpdirname)
                model = tf.keras.models.load_model(tmpdirname)
                outputs = model(inputs_dict)
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
                output = outputs[list(outputs.keys())[-1]] if isinstance(outputs, dict) else outputs[-1]
                hidden_states = [t.numpy() for t in output]
Julien Plu's avatar
Julien Plu committed
155
156
157
                self.assertEqual(len(outputs), num_out)
                self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
                self.assertListEqual(
Lysandre's avatar
Lysandre committed
158
159
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
Julien Plu's avatar
Julien Plu committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
                )

    @slow
    def test_saved_model_with_attentions_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        encoder_seq_length = (
            self.model_tester.encoder_seq_length
            if hasattr(self.model_tester, "encoder_seq_length")
            else self.model_tester.seq_length
        )
        encoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
        )

        for model_class in self.all_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            num_out = len(model(inputs_dict))
            model._saved_model_inputs_spec = None
            model._set_save_spec(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                tf.saved_model.save(model, tmpdirname)
                model = tf.keras.models.load_model(tmpdirname)
                outputs = model(inputs_dict)
Sylvain Gugger's avatar
Sylvain Gugger committed
186
187
                output = outputs[list(outputs.keys())[-1]] if isinstance(outputs, dict) else outputs[-1]
                attentions = [t.numpy() for t in output]
Julien Plu's avatar
Julien Plu committed
188
189
190
191
192
193
194
                self.assertEqual(len(outputs), num_out)
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )

195
196
197
198
199
200
201
202
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
203
            if module_member_name.endswith("MainLayer")
204
            for module_member in (getattr(module, module_member_name),)
205
206
207
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
208
209
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
210
211
212
213
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
214
                config.use_cache = False
Julien Plu's avatar
Julien Plu committed
215
216
217
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
218
219
220
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
221

222
223
224
225
226
227
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
228
229
230
231
232
233
234
235
236
237
238
239
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
240
241
242
243
244
245
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
246
247
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
248
249
        elif isinstance(after_outputs, dict):
            out_1 = after_outputs[list(after_outputs.keys())[0]]
Julien Plu's avatar
Julien Plu committed
250
251
        else:
            out_1 = after_outputs[0].numpy()
252
        out_2 = outputs[0].numpy()
253
        self.assertEqual(out_1.shape, out_2.shape)
254
255
256
257
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
258

259
260
261
    def test_pt_tf_model_equivalence(self):
        if not is_torch_available():
            return
thomwolf's avatar
thomwolf committed
262

263
        import torch
264

265
        import transformers
thomwolf's avatar
thomwolf committed
266

267
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
268

269
270
271
        for model_class in self.all_model_classes:
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beggining
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
272

273
            config.output_hidden_states = True
274

275
276
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
277

278
            # Check we can load pt model in tf and vice-versa with model => model functions
279

280
281
282
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
283
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
284

285
286
287
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
288
289
                (name, torch.from_numpy(key.numpy()).to(torch.long))
                for name, key in self._prepare_for_class(inputs_dict, model_class).items()
290
            )
291
292
293
294
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

295
296
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
297
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
298
299
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
300

301
302
303
304
305
306
307
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
308

309
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
310
            # Debug info (remove when fixed)
311
            if max_diff >= 4e-2:
312
313
314
315
316
                print("===")
                print(model_class)
                print(config)
                print(inputs_dict)
                print(pt_inputs_dict)
317
            self.assertLessEqual(max_diff, 4e-2)
318
319

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
320
            with tempfile.TemporaryDirectory() as tmpdirname:
321
322
323
324
325
326
327
328
329
330
331
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
332
333
                (name, torch.from_numpy(key.numpy()).to(torch.long))
                for name, key in self._prepare_for_class(inputs_dict, model_class).items()
334
            )
335
336
337
338
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

339
340
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
341
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
342
343
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
344
345
346
347
348
349
350
351
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

352
            max_diff = np.amax(np.abs(tfo - pto))
sgugger's avatar
sgugger committed
353
            self.assertLessEqual(max_diff, 4e-2)
354
355
356
357
358
359
360
361
362

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
363
364
365
366
367
            if self.is_encoder_decoder:
                input_ids = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"
                    ),
368
                    "input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
369
370
371
372
373
374
                }
            elif model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                input_ids = tf.keras.Input(batch_shape=(4, 2, 2000), name="input_ids", dtype="int32")
            else:
                input_ids = tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32")

375
376
377
378
            # Prepare our model
            model = model_class(config)

            # Let's load it from the disk to be sure we can use pretrained weights
379
            with tempfile.TemporaryDirectory() as tmpdirname:
380
                outputs = model(self._prepare_for_class(inputs_dict, model_class))  # build the model
381
382
383
384
385
386
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

387
            # Add a dense layer on top to test integration with other keras modules
388
389
390
391
392
393
394
395
396
397
398
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
399
            outputs_dict = model(self._prepare_for_class(inputs_dict, model_class))
400

401
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
402
            input_ids = inputs_keywords.pop("input_ids", None)
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
            outputs_keywords = model(input_ids, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        decoder_seq_length = (
            self.model_tester.decoder_seq_length
            if hasattr(self.model_tester, "decoder_seq_length")
            else self.model_tester.seq_length
        )
        encoder_seq_length = (
            self.model_tester.encoder_seq_length
            if hasattr(self.model_tester, "encoder_seq_length")
            else self.model_tester.seq_length
        )
        decoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
        )
        encoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
        )

        for model_class in self.all_model_classes:
430
            inputs_dict["output_attentions"] = True
431
432
            config.output_hidden_states = False
            model = model_class(config)
433
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
434
435
436
437
438
439
            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
440
            )
441
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
442

443
444
445
            if self.is_encoder_decoder:
                self.assertEqual(out_len % 2, 0)
                decoder_attentions = outputs[(out_len // 2) - 1]
446
                self.assertEqual(model.config.output_hidden_states, False)
447
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
448
                self.assertListEqual(
449
450
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
451
                )
thomwolf's avatar
thomwolf committed
452

453
454
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
455
            config.output_attentions = True
456
            model = model_class(config)
457
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
458
459
460
461
462
463
464
465
466
467
            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
468
469
            config.output_hidden_states = True
            model = model_class(config)
470
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
471
472
473
474
475
476
477
478
479
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)

            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
480

481
482
483
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
484
        def check_hidden_states_output(config, inputs_dict, model_class):
485
            model = model_class(config)
486
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
487
488
489
            hidden_states = [t.numpy() for t in outputs[-1]]
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
490
491
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.seq_length, self.model_tester.hidden_size],
492
            )
493

Joseph Liu's avatar
Joseph Liu committed
494
495
496
497
498
499
500
501
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

502
503
504
505
506
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
507
            assert isinstance(model.get_input_embeddings(), (tf.keras.layers.Layer, TFAdaptiveEmbedding))
508
509
510
511
512
513
514
515
            x = model.get_output_embeddings()
            assert x is None or isinstance(x, tf.keras.layers.Layer)

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
516
            first, second = (
517
518
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
519
            )
520
521
522
523
524
525
526
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}",
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

582
583
584
585
586
587
588
    def _get_embeds(self, wte, input_ids):
        # ^^ In our TF models, the input_embeddings can take slightly different forms,
        # so we try a few of them.
        # We used to fall back to just synthetically creating a dummy tensor of ones:
        try:
            x = wte(input_ids, mode="embedding")
        except Exception:
thomwolf's avatar
thomwolf committed
589
            try:
590
                x = wte([input_ids], mode="embedding")
591
            except Exception:
thomwolf's avatar
thomwolf committed
592
                try:
593
                    x = wte([input_ids, None, None, None], mode="embedding")
594
                except Exception:
595
                    if hasattr(self.model_tester, "embedding_size"):
Lysandre's avatar
Lysandre committed
596
597
598
599
                        x = tf.ones(
                            input_ids.shape + [self.model_tester.embedding_size],
                            dtype=tf.dtypes.float32,
                        )
600
                    else:
Lysandre's avatar
Lysandre committed
601
602
603
604
                        x = tf.ones(
                            input_ids.shape + [self.model_tester.hidden_size],
                            dtype=tf.dtypes.float32,
                        )
605
606
607
608
609
610
611
612
        return x

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

613
614
615
616
617
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
618
                encoder_input_ids = inputs["input_ids"]
619
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
620
                del inputs["input_ids"]
621
622
                inputs.pop("decoder_input_ids", None)

623
            wte = model.get_input_embeddings()
thomwolf's avatar
thomwolf committed
624
            if not self.is_encoder_decoder:
625
                inputs["inputs_embeds"] = self._get_embeds(wte, input_ids)
thomwolf's avatar
thomwolf committed
626
            else:
627
628
                inputs["inputs_embeds"] = self._get_embeds(wte, encoder_input_ids)
                inputs["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids)
629

630
            model(inputs)
631

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INPUT_SHAPE = [1, 10, config.hidden_size]
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
                emb_old = model.get_input_embeddings()
                emb_old.build(INPUT_SHAPE)
                # reshape the embeddings
                new_embeddings = model._get_resized_embeddings(emb_old, size)
                # # check that the the resized embeddings size matches the desired size.
                assert_size = size if size is not None else config.vocab_size
                self.assertEqual(new_embeddings.shape[0], assert_size)
                # check that weights remain the same after resizing
                emd_old_weights = model._get_word_embeddings(emb_old)
                models_equal = True
                for p1, p2 in zip(emd_old_weights.numpy(), new_embeddings.numpy()):
                    if np.sum(abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

656
    def test_lm_head_model_random_no_beam_search_generate(self):
657
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
658
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
659

660
        # iterate over all generative models
661
662
663
664
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
665
                # if bos token id is not defined mobel needs input_ids
666
                with self.assertRaises(AssertionError):
667
                    model.generate(do_sample=True, max_length=5)
668
                # num_return_sequences = 1
669
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
670
            else:
671
                # num_return_sequences = 1
672
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
673
674

            with self.assertRaises(AssertionError):
675
                # generating multiple sequences when no beam search generation
676
677
678
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

679
680
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
681
682

            # check bad words tokens language generation
683
684
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
685
            output_tokens = model.generate(
686
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
687
            )
688
            # only count generated tokens
689
690
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
711
712
713
714
715
716
717
718
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
719
720
721
722
723
724
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
725
            output_tokens = model.generate(
726
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
727
            )
728
            # only count generated tokens
729
730
731
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

732
733
734
735
736
737
738
739
740
741
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                added_label = prepared_for_class[list(prepared_for_class.keys() - inputs_dict.keys())[0]]
                loss_size = tf.size(added_label)

742
743
744
745
746
                if model.__class__ in TF_MODEL_FOR_CAUSAL_LM_MAPPING.values():
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

747
748
749
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")
750

751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
                loss = model(input_ids, **prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
                signature = inspect.getfullargspec(model.call)[0]

                # Create a dictionary holding the location of the tensors in the tuple
                tuple_index_mapping = {1: "input_ids"}
                for label_key in label_keys:
                    label_key_index = signature.index(label_key)
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())

                # Initialize a list with None, update the values and convert to a tuple
                list_input = [None] * sorted_tuple_index_mapping[-1][0]
                for index, value in sorted_tuple_index_mapping:
                    list_input[index - 1] = prepared_for_class[value]
                tuple_input = tuple(list_input)

                # Send to model
                loss = model(tuple_input)[0]
                self.assertEqual(loss.shape, [loss_size])

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

801
    def _check_generated_ids(self, output_ids):
802
803
804
805
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

806
807
808
809
810
811
812
813
814
815
816
817
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
818

thomwolf's avatar
thomwolf committed
819
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
820
821
822
823
824
825
826
827
828
829
830
831
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

832
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
833
834

    return output
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912


@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
913
914
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
915
916
917
918
919
920
921
922
923
924
925
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
926
927
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
928
929
930
931
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)