test_modeling_tf_common.py 55.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
thomwolf's avatar
thomwolf committed
20
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import tempfile
22
import unittest
23
from importlib import import_module
24
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
25

26
27
from transformers import is_tf_available
from transformers.testing_utils import _tf_gpu_memory_limit, is_pt_tf_cross_test, require_tf, slow
28

Aymeric Augustin's avatar
Aymeric Augustin committed
29

30
if is_tf_available():
thomwolf's avatar
thomwolf committed
31
    import numpy as np
32
    import tensorflow as tf
33

34
    from transformers import (
35
36
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
37
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
38
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
39
        TF_MODEL_FOR_PRETRAINING_MAPPING,
40
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
41
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
42
43
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
44
45
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
46
    )
47

Julien Chaumond's avatar
Julien Chaumond committed
48
49
50
51
52
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
53
54
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
55
                )
Julien Plu's avatar
Julien Plu committed
56
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
57
58
59
60
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
61

62

thomwolf's avatar
thomwolf committed
63
64
65
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
66
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
67
68
69
70
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


71
72
@require_tf
class TFModelTesterMixin:
73

74
75
    model_tester = None
    all_model_classes = ()
76
    all_generative_model_classes = ()
77
78
    test_resize_embeddings = True
    is_encoder_decoder = False
79

Lysandre Debut's avatar
Lysandre Debut committed
80
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
81
82
        inputs_dict = copy.deepcopy(inputs_dict)

83
        if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
84
            inputs_dict = {
85
86
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
87
88
89
                else v
                for k, v in inputs_dict.items()
            }
90
91
92

        if return_labels:
            if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
93
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
94
            elif model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
95
96
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
97
            elif model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
98
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
99
100
            elif model_class in TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values():
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
101
102
103
104
            elif model_class in [
                *TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *TF_MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *TF_MODEL_FOR_MASKED_LM_MAPPING.values(),
105
                *TF_MODEL_FOR_PRETRAINING_MAPPING.values(),
106
107
108
109
110
                *TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
111
112
        return inputs_dict

113
114
    def test_initialization(self):
        pass
115

116
117
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
118

119
120
        for model_class in self.all_model_classes:
            model = model_class(config)
121
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
122

123
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
124
                model.save_pretrained(tmpdirname, saved_model=False)
125
                model = model_class.from_pretrained(tmpdirname)
126
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
127

128
                self.assert_outputs_same(after_outputs, outputs)
129

130
131
132
133
134
135
136
137
138
139
140
141
142
    def test_graph_mode(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            inputs = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            @tf.function
            def run_in_graph_mode():
                return model(inputs)

            outputs = run_in_graph_mode()
            self.assertIsNotNone(outputs)

143
144
145
146
147
148
149
150
151
152
153
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
154
                    "input_ids",
155
156
157
158
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
159
160
161
162
163
164
                expected_arg_names.extend(
                    ["head_mask", "decoder_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" in arg_names
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
165
166

            else:
Julien Plu's avatar
Julien Plu committed
167
                expected_arg_names = ["input_ids"]
168
169
                self.assertListEqual(arg_names[:1], expected_arg_names)

Julien Plu's avatar
Julien Plu committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    def test_saved_model_creation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = False
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False

        model_class = self.all_model_classes[0]

        class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
        model = model_class(config)

        model(class_inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
187
            saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
Julien Plu's avatar
Julien Plu committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
            self.assertTrue(os.path.exists(saved_model_dir))

    @slow
    def test_saved_model_creation_extended(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        if hasattr(config, "use_cache"):
            config.use_cache = True

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            model(class_inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
207
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
Julien Plu's avatar
Julien Plu committed
208
209
                self.assertTrue(os.path.exists(saved_model_dir))

Julien Plu's avatar
Julien Plu committed
210
211
212
213
    @slow
    def test_saved_model_with_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
Julien Plu's avatar
Julien Plu committed
214
215
216
217
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False
Julien Plu's avatar
Julien Plu committed
218
219

        for model_class in self.all_model_classes:
Lysandre Debut's avatar
Lysandre Debut committed
220
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Julien Plu's avatar
Julien Plu committed
221
            model = model_class(config)
Lysandre Debut's avatar
Lysandre Debut committed
222
            num_out = len(model(class_inputs_dict))
Julien Plu's avatar
Julien Plu committed
223
224

            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
225
                model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
226
227
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
                model = tf.keras.models.load_model(saved_model_dir)
Lysandre Debut's avatar
Lysandre Debut committed
228
                outputs = model(class_inputs_dict)
229
230

                if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
231
                    output = outputs["encoder_hidden_states"]
232
                else:
Julien Plu's avatar
Julien Plu committed
233
                    output = outputs["hidden_states"]
234

Julien Plu's avatar
Julien Plu committed
235
                self.assertEqual(len(outputs), num_out)
Julien Plu's avatar
Julien Plu committed
236

Lysandre Debut's avatar
Lysandre Debut committed
237
238
239
                expected_num_layers = getattr(
                    self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
                )
Julien Plu's avatar
Julien Plu committed
240
241

                self.assertEqual(len(output), expected_num_layers)
Julien Plu's avatar
Julien Plu committed
242
                self.assertListEqual(
Julien Plu's avatar
Julien Plu committed
243
                    list(output[0].shape[-2:]),
Lysandre's avatar
Lysandre committed
244
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
Julien Plu's avatar
Julien Plu committed
245
246
247
248
249
250
                )

    @slow
    def test_saved_model_with_attentions_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
Julien Plu's avatar
Julien Plu committed
251
252
253
254
        config.output_hidden_states = False

        if hasattr(config, "use_cache"):
            config.use_cache = False
Lysandre Debut's avatar
Lysandre Debut committed
255
256
257

        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Julien Plu's avatar
Julien Plu committed
258
259

        for model_class in self.all_model_classes:
Lysandre Debut's avatar
Lysandre Debut committed
260
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Julien Plu's avatar
Julien Plu committed
261
            model = model_class(config)
Lysandre Debut's avatar
Lysandre Debut committed
262
            num_out = len(model(class_inputs_dict))
Julien Plu's avatar
Julien Plu committed
263
264

            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
265
                model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
266
267
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
                model = tf.keras.models.load_model(saved_model_dir)
Lysandre Debut's avatar
Lysandre Debut committed
268
                outputs = model(class_inputs_dict)
269
270

                if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
271
                    output = outputs["encoder_attentions"]
272
                else:
Julien Plu's avatar
Julien Plu committed
273
                    output = outputs["attentions"]
274

Julien Plu's avatar
Julien Plu committed
275
                self.assertEqual(len(outputs), num_out)
Julien Plu's avatar
Julien Plu committed
276
                self.assertEqual(len(output), self.model_tester.num_hidden_layers)
Julien Plu's avatar
Julien Plu committed
277
                self.assertListEqual(
Julien Plu's avatar
Julien Plu committed
278
                    list(output[0].shape[-3:]),
Julien Plu's avatar
Julien Plu committed
279
280
281
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )

282
283
284
285
286
287
288
289
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
290
            if module_member_name.endswith("MainLayer")
291
            for module_member in (getattr(module, module_member_name),)
292
293
294
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
295
296
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
297
298
299
300
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
301
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
302
303
304
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
305

306
307
308
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
309

310
311
312
313
314
315
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
316
317
318
319
320
321
322
323
324
325
326
327
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
328
329
330
331
332
333
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
334
335
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
336
        elif isinstance(after_outputs, dict):
337
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
338
339
        else:
            out_1 = after_outputs[0].numpy()
340
        out_2 = outputs[0].numpy()
341
        self.assertEqual(out_1.shape, out_2.shape)
342
343
344
345
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
346

347
    @is_pt_tf_cross_test
348
    def test_pt_tf_model_equivalence(self):
thomwolf's avatar
thomwolf committed
349

350
        import torch
351

352
        import transformers
thomwolf's avatar
thomwolf committed
353

354
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
355

356
        for model_class in self.all_model_classes:
357
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
358
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
359

360
            config.output_hidden_states = True
361

362
363
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
364

365
            # Check we can load pt model in tf and vice-versa with model => model functions
366

367
368
369
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
370
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
371

372
373
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
374
375
376
377
378
379
380
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    pt_inputs_dict[name] = key
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

381
382
383
384
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

385
386
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
387
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
388
389
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
390

391
392
393
394
395
396
397
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
398

399
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
400
            self.assertLessEqual(max_diff, 4e-2)
401
402

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
403
            with tempfile.TemporaryDirectory() as tmpdirname:
404
405
406
407
408
409
410
411
412
413
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
414
415
416
417
418
419
420
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    key = np.array(key, dtype=bool)
                    pt_inputs_dict[name] = torch.from_numpy(key).to(torch.long)
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)
421
422
423
424
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

425
426
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
427
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
428
429
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
430
431
432
433
434
435
436
437
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

438
            max_diff = np.amax(np.abs(tfo - pto))
sgugger's avatar
sgugger committed
439
            self.assertLessEqual(max_diff, 4e-2)
440

441
442
    def test_train_pipeline_custom_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
443
444
445
446
447
        # head_mask and decoder_head_mask has different shapes than other input args
        if "head_mask" in inputs_dict:
            del inputs_dict["head_mask"]
        if "decoder_head_mask" in inputs_dict:
            del inputs_dict["decoder_head_mask"]
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
            if module_member_name.endswith("MainLayer")
            for module_member in (getattr(module, module_member_name),)
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
        )

        for main_layer_class in tf_main_layer_classes:
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared")
                config.use_cache = False
                main_layer = main_layer_class(config, embed_tokens=shared)
                del inputs_dict["use_cache"]
            else:
                main_layer = main_layer_class(config)

            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }

            if hasattr(self.model_tester, "num_labels"):
                num_labels = self.model_tester.num_labels
            else:
                num_labels = 2

            X = tf.data.Dataset.from_tensor_slices(
Julien Plu's avatar
Julien Plu committed
481
                (inputs_dict, np.ones((self.model_tester.batch_size, self.model_tester.seq_length, num_labels, 1)))
482
483
484
485
486
487
            ).batch(1)

            hidden_states = main_layer(symbolic_inputs)[0]
            outputs = tf.keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states)
            model = tf.keras.models.Model(inputs=symbolic_inputs, outputs=[outputs])

Julien Plu's avatar
Julien Plu committed
488
            model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["binary_accuracy"])
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
            model.fit(X, epochs=1)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
                assert isinstance(model, tf.keras.Model)
                model(inputs_dict)

509
510
    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
511
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
512
513
514
515
516
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
517
518
519
            if self.is_encoder_decoder:
                input_ids = {
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
520
521
522
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
523
                    ),
Julien Plu's avatar
Julien Plu committed
524
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
525
526
                }
            elif model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
Julien Plu's avatar
Julien Plu committed
527
                input_ids = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
528
            else:
Julien Plu's avatar
Julien Plu committed
529
                input_ids = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
530

531
532
            # Prepare our model
            model = model_class(config)
533
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
534
            # Let's load it from the disk to be sure we can use pretrained weights
535
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
536
                model.save_pretrained(tmpdirname, saved_model=False)
537
538
539
540
541
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

542
            # Add a dense layer on top to test integration with other keras modules
543
544
545
546
547
548
549
550
551
552
553
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
554
555
556
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
557

558
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
559
            input_ids = inputs_keywords.pop("input_ids", None)
560
561
562
563
564
565
566
567
            outputs_keywords = model(input_ids, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
568
        config.return_dict = True
569
570
571
572
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
573

Julien Plu's avatar
Julien Plu committed
574
575
576
577
578
579
580
581
582
583
584
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
            self.assertEqual(out_len % 2, 0)
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
585
586
587
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
588
589
590
591
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
592
            )
Julien Plu's avatar
Julien Plu committed
593
594
595
596
597
598
599

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["use_cache"] = False
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
600
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
601
602
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
603

604
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
605
606
607
608
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
609

610
611
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
612
            config.output_attentions = True
613
            model = model_class(config)
614
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
615
616
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
617
618
619

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
620
621
            config.output_hidden_states = True
            model = model_class(config)
622
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
623

624
625
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
626
            check_encoder_attentions_output(outputs)
627

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
            else:
                check_attentions_validity(outputs.attentions)

697
698
699
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
700
        def check_hidden_states_output(config, inputs_dict, model_class):
701
            model = model_class(config)
702
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
703
704
705
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
706

Julien Plu's avatar
Julien Plu committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
730

Joseph Liu's avatar
Joseph Liu committed
731
732
733
734
735
736
737
738
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

739
740
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
741
742
743
744
745
        list_lm_models = (
            list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.values())
            + list(TF_MODEL_FOR_MASKED_LM_MAPPING.values())
            + list(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values())
        )
746
747
748

        for model_class in self.all_model_classes:
            model = model_class(config)
749
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
750
751

            if model_class in list_lm_models:
752
                x = model.get_output_embeddings()
753
                assert isinstance(x, tf.keras.layers.Layer)
754
755
756
757
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
758
            else:
759
                x = model.get_output_embeddings()
760
                assert x is None
761
762
                name = model.get_bias()
                assert name is None
763
764
765
766
767
768

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
769
            first, second = (
770
771
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
772
            )
773
774
775
776
777
778
779
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}",
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

835
836
837
838
839
840
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

841
842
843
844
845
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
846
                encoder_input_ids = inputs["input_ids"]
847
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
848
                del inputs["input_ids"]
849
850
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
851
            if not self.is_encoder_decoder:
852
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
853
            else:
854
855
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
856

857
            model(inputs)
858

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

            model(inputs_np)

880
881
882
883
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
884
885

        def _get_word_embedding_weight(model, embedding_layer):
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            model(model.dummy_inputs)

            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            return None
905

906
907
908
909
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
910
911
912
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
913
                # reshape the embeddings
914
915
916
917
918
919
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
920
                assert_size = size if size is not None else config.vocab_size
921
922
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

923
924
                # check that weights remain the same after resizing
                models_equal = True
925
926
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
927
928
929
                        models_equal = False
                self.assertTrue(models_equal)

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[0], assert_size)

                        models_equal = True
                        for p1, p2 in zip(old_weight.value(), new_weight.value()):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

950
    def test_lm_head_model_random_no_beam_search_generate(self):
951
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
952
        input_ids = inputs_dict["input_ids"]
953

954
        # iterate over all generative models
955
956
957
958
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
959
                # if bos token id is not defined mobel needs input_ids
960
                with self.assertRaises(AssertionError):
961
                    model.generate(do_sample=True, max_length=5)
962
                # num_return_sequences = 1
963
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
964
            else:
965
                # num_return_sequences = 1
966
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
967
968

            with self.assertRaises(AssertionError):
969
                # generating multiple sequences when no beam search generation
970
971
972
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

973
974
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
975
976

            # check bad words tokens language generation
977
978
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
979
            output_tokens = model.generate(
980
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
981
            )
982
            # only count generated tokens
983
984
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
985

986
987
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
988
        input_ids = inputs_dict["input_ids"]
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1005
1006
1007
1008
1009
1010
1011
1012
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1013
1014
1015
1016
1017
1018
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1019
            output_tokens = model.generate(
1020
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1021
            )
1022
            # only count generated tokens
1023
1024
1025
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1026
1027
1028
1029
1030
1031
1032
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1033
1034
1035
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
1036
1037
                loss_size = tf.size(added_label)

1038
1039
1040
1041
1042
                if model.__class__ in TF_MODEL_FOR_CAUSAL_LM_MAPPING.values():
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

1043
1044
1045
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")
1046

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
                loss = model(input_ids, **prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
1060
1061
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
1062
1063

                # Create a dictionary holding the location of the tensors in the tuple
1064
                tuple_index_mapping = {0: "input_ids"}
1065
                for label_key in label_keys:
1066
                    label_key_index = signature_names.index(label_key)
1067
1068
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
1069
1070
1071
1072
1073
1074
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
1075
1076

                for index, value in sorted_tuple_index_mapping:
1077
1078
                    list_input[index] = prepared_for_class[value]

1079
1080
1081
                tuple_input = tuple(list_input)

                # Send to model
1082
1083
                loss = model(tuple_input[:-1])[0]

1084
1085
                self.assertEqual(loss.shape, [loss_size])

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1104
    def _check_generated_ids(self, output_ids):
1105
1106
1107
1108
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1121

thomwolf's avatar
thomwolf committed
1122
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1135
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1136
1137

    return output
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215


@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1216
1217
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1229
1230
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1231
1232
1233
1234
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)