"tests/models/layoutlm/test_modeling_tf_layoutlm.py" did not exist on "345c23a60f86d7a786423c0e5274e5e58a20c7b2"
test_pipelines_image_segmentation.py 27.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import tempfile
16
import unittest
17
from typing import Dict
18

19
import datasets
20
import numpy as np
21
import requests
22
from datasets import load_dataset
23
from huggingface_hub.utils import insecure_hashlib
24

25
26
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
27
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
28
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
29
    AutoImageProcessor,
30
    AutoModelForImageSegmentation,
31
    AutoModelForInstanceSegmentation,
32
    DetrForSegmentation,
33
    ImageSegmentationPipeline,
34
    MaskFormerForInstanceSegmentation,
35
36
37
    is_vision_available,
    pipeline,
)
38
39
40
41
42
43
44
45
46
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_timm,
    require_torch,
    require_vision,
    slow,
)
47

48
from .test_pipelines_common import ANY
49
50
51
52
53
54
55
56
57
58
59
60


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


61
def hashimage(image: Image) -> str:
62
    m = insecure_hashlib.md5(image.tobytes())
63
64
65
66
67
68
69
70
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    white_pixels = (npimg == 255).sum()
    shape = npimg.shape
    return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
71
72


73
74
75
76
77
78
def mask_to_test_readable_only_shape(mask: Image) -> Dict:
    npimg = np.array(mask)
    shape = npimg.shape
    return {"shape": shape}


79
@is_pipeline_test
80
81
82
@require_vision
@require_timm
@require_torch
83
class ImageSegmentationPipelineTests(unittest.TestCase):
84
85
    model_mapping = dict(
        (list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else [])
86
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
87
88
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
    )
89

90
91
    def get_test_pipeline(self, model, tokenizer, processor):
        image_segmenter = ImageSegmentationPipeline(model=model, image_processor=processor)
92
93
94
95
96
97
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
98
99
100
101
102
103
        outputs = image_segmenter(
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
        )
104
105
        self.assertIsInstance(outputs, list)
        n = len(outputs)
106
107
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation, DetrForSegmentation)):
            # Instance segmentation (maskformer, and detr) have a slot for null class
108
109
110
111
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
112
113
114
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
115

116
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
117

118
        # RGBA
119
        outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
120
121
122
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
123
        outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
124
125
126
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
127
        outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
128
129
130
131
132
133
134
135
136
137
138
139
140
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
141
        batch = [
142
143
144
145
146
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
147
        ]
148
        outputs = image_segmenter(
149
150
151
152
153
            batch,
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
            batch_size=batch_size,
154
        )
155
        self.assertEqual(len(batch), len(outputs))
156
        self.assertEqual(len(outputs[0]), n)
157
158
        self.assertEqual(
            [
159
160
161
162
163
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
164
            ],
165
166
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
167
168
169
170
171
172
173
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    @require_torch
    def test_small_model_pt_no_panoptic(self):
        model_id = "hf-internal-testing/tiny-random-mobilevit"
        # The default task is `image-classification` we need to override
        pipe = pipeline(task="image-segmentation", model=model_id)

        # This model does NOT support neither `instance` nor  `panoptic`
        # We should error out
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic")
        self.assertEqual(
            str(e.exception),
            "Subtask panoptic is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        self.assertEqual(
            str(e.exception),
            "Subtask instance is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )

197
198
    @require_torch
    def test_small_model_pt(self):
199
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
200
201

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
202
        image_processor = AutoImageProcessor.from_pretrained(model_id)
203
204
        image_segmenter = ImageSegmentationPipeline(
            model=model,
205
            image_processor=image_processor,
206
207
208
209
            subtask="panoptic",
            threshold=0.0,
            mask_threshold=0.0,
            overlap_mask_area_threshold=0.0,
210
211
        )

212
213
214
215
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

216
        # Shortening by hashing
217
        for o in outputs:
218
            o["mask"] = mask_to_test_readable(o["mask"])
219

220
        # This is extremely brittle, and those values are made specific for the CI.
221
222
223
224
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
225
                    "score": 0.004,
226
                    "label": "LABEL_215",
227
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
228
                },
229
            ],
230
231
232
233
234
235
236
237
238
239
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
        for output in outputs:
            for o in output:
240
                o["mask"] = mask_to_test_readable(o["mask"])
241
242
243
244
245
246

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
247
                        "score": 0.004,
248
                        "label": "LABEL_215",
249
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
250
251
252
253
                    },
                ],
                [
                    {
254
                        "score": 0.004,
255
                        "label": "LABEL_215",
256
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
257
                    },
258
                ],
259
260
261
            ],
        )

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        for o in output:
            o["mask"] = mask_to_test_readable(o["mask"])
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "score": 0.004,
                    "label": "LABEL_215",
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
                },
            ],
        )

        # This must be surprising to the reader.
        # The `panoptic` returns only LABEL_215, and this returns 3 labels.
        #
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="semantic")
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

        output_masks = [o["mask"] for o in output]

        # page links (to visualize)
        expected_masks = [
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_0.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_1.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_2.png",
        ]
        # actual links to get files
        expected_masks = [x.replace("/blob/", "/resolve/") for x in expected_masks]
        expected_masks = [Image.open(requests.get(image, stream=True).raw) for image in expected_masks]

        # Convert masks to numpy array
        output_masks = [np.array(x) for x in output_masks]
        expected_masks = [np.array(x) for x in expected_masks]

        self.assertEqual(output_masks[0].shape, expected_masks[0].shape)
        self.assertEqual(output_masks[1].shape, expected_masks[1].shape)
        self.assertEqual(output_masks[2].shape, expected_masks[2].shape)

        # With un-trained tiny random models, the output `logits` tensor is very likely to contain many values
        # close to each other, which cause `argmax` to give quite different results when running the test on 2
        # environments. We use a lower threshold `0.9` here to avoid flakiness.
        self.assertGreaterEqual(np.mean(output_masks[0] == expected_masks[0]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[1] == expected_masks[1]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[2] == expected_masks[2]), 0.9)

308
        for o in output:
309
            o["mask"] = mask_to_test_readable_only_shape(o["mask"])
310
311
312
313
314
315
        self.maxDiff = None
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "label": "LABEL_88",
316
                    "mask": {"shape": (480, 640)},
317
318
319
320
                    "score": None,
                },
                {
                    "label": "LABEL_101",
321
                    "mask": {"shape": (480, 640)},
322
323
324
325
                    "score": None,
                },
                {
                    "label": "LABEL_215",
326
                    "mask": {"shape": (480, 640)},
327
328
329
330
331
                    "score": None,
                },
            ],
        )

332
333
334
335
336
337
338
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
339
            o["mask"] = mask_to_test_readable(o["mask"])
340
341
342
343

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
344
345
346
347
348
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
                },
349
350
351
                {
                    "score": None,
                    "label": "LABEL_1",
352
                    "mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
353
354
355
356
                },
            ],
        )

357
358
359
360
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"
361
362
363
364
365
366
        image_segmenter = pipeline(
            "image-segmentation",
            model=model_id,
            threshold=0.0,
            overlap_mask_area_threshold=0.0,
        )
367

368
369
370
371
372
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

        # Shortening by hashing
373
        for o in outputs:
374
            o["mask"] = mask_to_test_readable(o["mask"])
375
376
377
378

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
                {
                    "score": 0.9094,
                    "label": "blanket",
                    "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                },
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
409
410
411
412
413
414
415
416
417
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
418
419

        # Shortening by hashing
420
421
        for output in outputs:
            for o in output:
422
                o["mask"] = mask_to_test_readable(o["mask"])
423
424
425
426
427

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
458
459
                ],
                [
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
490
491
492
493
494
495
496
497
498
499
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

500
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.999)
501
502
        # Shortening by hashing
        for o in outputs:
503
            o["mask"] = mask_to_test_readable(o["mask"])
504
505
506
507

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
508
509
510
511
512
513
514
515
516
517
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
                },
518
519
520
            ],
        )

521
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.5)
522
523

        for o in outputs:
524
            o["mask"] = mask_to_test_readable(o["mask"])
525
526
527
528

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
554
555
            ],
        )
556
557
558
559

    @require_torch
    @slow
    def test_maskformer(self):
560
        threshold = 0.8
561
562
        model_id = "facebook/maskformer-swin-base-ade"

563
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
Yih-Dar's avatar
Yih-Dar committed
564
        image_processor = AutoImageProcessor.from_pretrained(model_id)
565

Yih-Dar's avatar
Yih-Dar committed
566
        image_segmenter = pipeline("image-segmentation", model=model, image_processor=image_processor)
567
568

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
569
        file = image[0]["file"]
570
        outputs = image_segmenter(file, threshold=threshold)
571

572
        # Shortening by hashing
573
        for o in outputs:
574
            o["mask"] = mask_to_test_readable(o["mask"])
575
576
577
578

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
                {
                    "score": 0.9974,
                    "label": "wall",
                    "mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
                },
                {
                    "score": 0.949,
                    "label": "house",
                    "mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
                },
                {
                    "score": 0.9995,
                    "label": "grass",
                    "mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
                },
                {
                    "score": 0.9976,
                    "label": "tree",
                    "mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
                },
                {
                    "score": 0.8239,
                    "label": "plant",
                    "mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
                },
                {
                    "score": 0.9942,
                    "label": "road, route",
                    "mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
                },
                {
                    "score": 1.0,
                    "label": "sky",
                    "mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
                },
614
615
            ],
        )
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

    @require_torch
    @slow
    def test_oneformer(self):
        image_segmenter = pipeline(model="shi-labs/oneformer_ade20k_swin_tiny")

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        file = image[0]["file"]
        outputs = image_segmenter(file, threshold=0.99)
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.9981,
                    "label": "grass",
                    "mask": {"hash": "3a92904d4c", "white_pixels": 118131, "shape": (512, 683)},
                },
                {
                    "score": 0.9992,
                    "label": "sky",
                    "mask": {"hash": "fa2300cc9a", "white_pixels": 231565, "shape": (512, 683)},
                },
            ],
        )

        # Different task
        outputs = image_segmenter(file, threshold=0.99, subtask="instance")
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.9991,
                    "label": "sky",
                    "mask": {"hash": "8b1ffad016", "white_pixels": 230566, "shape": (512, 683)},
                },
                {
                    "score": 0.9981,
                    "label": "grass",
                    "mask": {"hash": "9bbdf83d3d", "white_pixels": 119130, "shape": (512, 683)},
                },
            ],
        )

        # Different task
        outputs = image_segmenter(file, subtask="semantic")
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": None,
                    "label": "wall",
                    "mask": {"hash": "897fb20b7f", "white_pixels": 14506, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "building",
                    "mask": {"hash": "f2a68c63e4", "white_pixels": 125019, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "sky",
                    "mask": {"hash": "e0ca3a548e", "white_pixels": 135330, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "tree",
                    "mask": {"hash": "7c9544bcac", "white_pixels": 16263, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "road, route",
                    "mask": {"hash": "2c7704e491", "white_pixels": 2143, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "grass",
                    "mask": {"hash": "bf6c2867e0", "white_pixels": 53040, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "plant",
                    "mask": {"hash": "93c4b7199e", "white_pixels": 3335, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "house",
                    "mask": {"hash": "93ec419ad5", "white_pixels": 60, "shape": (512, 683)},
                },
            ],
        )
718
719
720
721
722
723
724
725
726
727
728
729
730
731

    def test_save_load(self):
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
        image_processor = AutoImageProcessor.from_pretrained(model_id)
        image_segmenter = pipeline(
            task="image-segmentation",
            model=model,
            image_processor=image_processor,
        )
        with tempfile.TemporaryDirectory() as tmpdirname:
            image_segmenter.save_pretrained(tmpdirname)
            pipeline(task="image-segmentation", model=tmpdirname)