test_pipelines_image_segmentation.py 26.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest
17
from typing import Dict
18

19
import datasets
20
import numpy as np
21
from datasets import load_dataset
22

23
import requests
24
25
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
26
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
27
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
28
    AutoFeatureExtractor,
29
    AutoImageProcessor,
30
    AutoModelForImageSegmentation,
31
    AutoModelForInstanceSegmentation,
32
    DetrForSegmentation,
33
    ImageSegmentationPipeline,
34
    MaskFormerForInstanceSegmentation,
35
36
37
    is_vision_available,
    pipeline,
)
38
from transformers.testing_utils import nested_simplify, require_tf, require_timm, require_torch, require_vision, slow
39
40
41
42
43
44
45
46
47
48
49
50
51
52

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


53
54
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
55
56
57
58
59
60
61
62
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    white_pixels = (npimg == 255).sum()
    shape = npimg.shape
    return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
63
64


65
66
67
68
69
70
def mask_to_test_readable_only_shape(mask: Image) -> Dict:
    npimg = np.array(mask)
    shape = npimg.shape
    return {"shape": shape}


71
72
73
74
@require_vision
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
75
76
77
78
79
80
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
81
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
82
    }
83

84
85
    def get_test_pipeline(self, model, tokenizer, processor):
        image_segmenter = ImageSegmentationPipeline(model=model, image_processor=processor)
86
87
88
89
90
91
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
92
93
94
95
96
97
        outputs = image_segmenter(
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
        )
98
99
        self.assertIsInstance(outputs, list)
        n = len(outputs)
100
101
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation, DetrForSegmentation)):
            # Instance segmentation (maskformer, and detr) have a slot for null class
102
103
104
105
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
106
107
108
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
109

110
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
111

112
        # RGBA
113
        outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
114
115
116
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
117
        outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
118
119
120
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
121
        outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
122
123
124
125
126
127
128
129
130
131
132
133
134
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
135
        batch = [
136
137
138
139
140
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
141
        ]
142
        outputs = image_segmenter(
143
144
145
146
147
            batch,
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
            batch_size=batch_size,
148
        )
149
        self.assertEqual(len(batch), len(outputs))
150
        self.assertEqual(len(outputs[0]), n)
151
152
        self.assertEqual(
            [
153
154
155
156
157
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
158
            ],
159
160
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
161
162
163
164
165
166
167
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    @require_torch
    def test_small_model_pt_no_panoptic(self):
        model_id = "hf-internal-testing/tiny-random-mobilevit"
        # The default task is `image-classification` we need to override
        pipe = pipeline(task="image-segmentation", model=model_id)

        # This model does NOT support neither `instance` nor  `panoptic`
        # We should error out
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic")
        self.assertEqual(
            str(e.exception),
            "Subtask panoptic is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        self.assertEqual(
            str(e.exception),
            "Subtask instance is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )

191
192
    @require_torch
    def test_small_model_pt(self):
193
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
194
195

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
196
        image_processor = AutoImageProcessor.from_pretrained(model_id)
197
198
        image_segmenter = ImageSegmentationPipeline(
            model=model,
199
            image_processor=image_processor,
200
201
202
203
            subtask="panoptic",
            threshold=0.0,
            mask_threshold=0.0,
            overlap_mask_area_threshold=0.0,
204
205
        )

206
207
208
209
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

210
        # Shortening by hashing
211
        for o in outputs:
212
            o["mask"] = mask_to_test_readable(o["mask"])
213

214
        # This is extremely brittle, and those values are made specific for the CI.
215
216
217
218
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
219
                    "score": 0.004,
220
                    "label": "LABEL_215",
221
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
222
                },
223
            ],
224
225
226
227
228
229
230
231
232
233
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
        for output in outputs:
            for o in output:
234
                o["mask"] = mask_to_test_readable(o["mask"])
235
236
237
238
239
240

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
241
                        "score": 0.004,
242
                        "label": "LABEL_215",
243
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
244
245
246
247
                    },
                ],
                [
                    {
248
                        "score": 0.004,
249
                        "label": "LABEL_215",
250
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
251
                    },
252
                ],
253
254
255
            ],
        )

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        for o in output:
            o["mask"] = mask_to_test_readable(o["mask"])
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "score": 0.004,
                    "label": "LABEL_215",
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
                },
            ],
        )

        # This must be surprising to the reader.
        # The `panoptic` returns only LABEL_215, and this returns 3 labels.
        #
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="semantic")
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

        output_masks = [o["mask"] for o in output]

        # page links (to visualize)
        expected_masks = [
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_0.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_1.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_2.png",
        ]
        # actual links to get files
        expected_masks = [x.replace("/blob/", "/resolve/") for x in expected_masks]
        expected_masks = [Image.open(requests.get(image, stream=True).raw) for image in expected_masks]

        # Convert masks to numpy array
        output_masks = [np.array(x) for x in output_masks]
        expected_masks = [np.array(x) for x in expected_masks]

        self.assertEqual(output_masks[0].shape, expected_masks[0].shape)
        self.assertEqual(output_masks[1].shape, expected_masks[1].shape)
        self.assertEqual(output_masks[2].shape, expected_masks[2].shape)

        # With un-trained tiny random models, the output `logits` tensor is very likely to contain many values
        # close to each other, which cause `argmax` to give quite different results when running the test on 2
        # environments. We use a lower threshold `0.9` here to avoid flakiness.
        self.assertGreaterEqual(np.mean(output_masks[0] == expected_masks[0]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[1] == expected_masks[1]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[2] == expected_masks[2]), 0.9)

302
        for o in output:
303
            o["mask"] = mask_to_test_readable_only_shape(o["mask"])
304
305
306
307
308
309
        self.maxDiff = None
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "label": "LABEL_88",
310
                    "mask": {"shape": (480, 640)},
311
312
313
314
                    "score": None,
                },
                {
                    "label": "LABEL_101",
315
                    "mask": {"shape": (480, 640)},
316
317
318
319
                    "score": None,
                },
                {
                    "label": "LABEL_215",
320
                    "mask": {"shape": (480, 640)},
321
322
323
324
325
                    "score": None,
                },
            ],
        )

326
327
328
329
330
331
332
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
333
            o["mask"] = mask_to_test_readable(o["mask"])
334
335
336
337

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
338
339
340
341
342
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
                },
343
344
345
                {
                    "score": None,
                    "label": "LABEL_1",
346
                    "mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
347
348
349
350
                },
            ],
        )

351
352
353
354
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"
355
356
357
358
359
360
        image_segmenter = pipeline(
            "image-segmentation",
            model=model_id,
            threshold=0.0,
            overlap_mask_area_threshold=0.0,
        )
361

362
363
364
365
366
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

        # Shortening by hashing
367
        for o in outputs:
368
            o["mask"] = mask_to_test_readable(o["mask"])
369
370
371
372

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
                {
                    "score": 0.9094,
                    "label": "blanket",
                    "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                },
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
403
404
405
406
407
408
409
410
411
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
412
413

        # Shortening by hashing
414
415
        for output in outputs:
            for o in output:
416
                o["mask"] = mask_to_test_readable(o["mask"])
417
418
419
420
421

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
452
453
                ],
                [
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
484
485
486
487
488
489
490
491
492
493
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

494
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.999)
495
496
        # Shortening by hashing
        for o in outputs:
497
            o["mask"] = mask_to_test_readable(o["mask"])
498
499
500
501

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
502
503
504
505
506
507
508
509
510
511
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
                },
512
513
514
            ],
        )

515
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.5)
516
517

        for o in outputs:
518
            o["mask"] = mask_to_test_readable(o["mask"])
519
520
521
522

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
548
549
            ],
        )
550
551
552
553

    @require_torch
    @slow
    def test_maskformer(self):
554
        threshold = 0.8
555
556
        model_id = "facebook/maskformer-swin-base-ade"

557
558
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
559
560
561
562

        image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
563
        file = image[0]["file"]
564
        outputs = image_segmenter(file, threshold=threshold)
565

566
        # Shortening by hashing
567
        for o in outputs:
568
            o["mask"] = mask_to_test_readable(o["mask"])
569
570
571
572

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
                {
                    "score": 0.9974,
                    "label": "wall",
                    "mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
                },
                {
                    "score": 0.949,
                    "label": "house",
                    "mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
                },
                {
                    "score": 0.9995,
                    "label": "grass",
                    "mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
                },
                {
                    "score": 0.9976,
                    "label": "tree",
                    "mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
                },
                {
                    "score": 0.8239,
                    "label": "plant",
                    "mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
                },
                {
                    "score": 0.9942,
                    "label": "road, route",
                    "mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
                },
                {
                    "score": 1.0,
                    "label": "sky",
                    "mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
                },
608
609
            ],
        )
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

    @require_torch
    @slow
    def test_oneformer(self):
        image_segmenter = pipeline(model="shi-labs/oneformer_ade20k_swin_tiny")

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        file = image[0]["file"]
        outputs = image_segmenter(file, threshold=0.99)
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.9981,
                    "label": "grass",
                    "mask": {"hash": "3a92904d4c", "white_pixels": 118131, "shape": (512, 683)},
                },
                {
                    "score": 0.9992,
                    "label": "sky",
                    "mask": {"hash": "fa2300cc9a", "white_pixels": 231565, "shape": (512, 683)},
                },
            ],
        )

        # Different task
        outputs = image_segmenter(file, threshold=0.99, subtask="instance")
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.9991,
                    "label": "sky",
                    "mask": {"hash": "8b1ffad016", "white_pixels": 230566, "shape": (512, 683)},
                },
                {
                    "score": 0.9981,
                    "label": "grass",
                    "mask": {"hash": "9bbdf83d3d", "white_pixels": 119130, "shape": (512, 683)},
                },
            ],
        )

        # Different task
        outputs = image_segmenter(file, subtask="semantic")
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": None,
                    "label": "wall",
                    "mask": {"hash": "897fb20b7f", "white_pixels": 14506, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "building",
                    "mask": {"hash": "f2a68c63e4", "white_pixels": 125019, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "sky",
                    "mask": {"hash": "e0ca3a548e", "white_pixels": 135330, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "tree",
                    "mask": {"hash": "7c9544bcac", "white_pixels": 16263, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "road, route",
                    "mask": {"hash": "2c7704e491", "white_pixels": 2143, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "grass",
                    "mask": {"hash": "bf6c2867e0", "white_pixels": 53040, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "plant",
                    "mask": {"hash": "93c4b7199e", "white_pixels": 3335, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "house",
                    "mask": {"hash": "93ec419ad5", "white_pixels": 60, "shape": (512, 683)},
                },
            ],
        )