test_pipelines_image_segmentation.py 19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest
17
from typing import Dict
18

19
import datasets
20
import numpy as np
21
from datasets import load_dataset
22

23
24
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
25
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
26
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
27
28
    AutoFeatureExtractor,
    AutoModelForImageSegmentation,
29
    AutoModelForInstanceSegmentation,
30
    DetrForSegmentation,
31
    ImageSegmentationPipeline,
32
    MaskFormerForInstanceSegmentation,
33
34
35
    is_vision_available,
    pipeline,
)
36
from transformers.testing_utils import nested_simplify, require_tf, require_timm, require_torch, require_vision, slow
37
38
39
40
41
42
43
44
45
46
47
48
49
50

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


51
52
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
53
54
55
56
57
58
59
60
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    white_pixels = (npimg == 255).sum()
    shape = npimg.shape
    return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
61
62


63
64
65
66
@require_vision
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
67
68
69
70
71
72
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
73
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
74
    }
75

76
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
77
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
78
79
80
81
82
83
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
84
85
86
87
88
89
        outputs = image_segmenter(
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
        )
90
91
        self.assertIsInstance(outputs, list)
        n = len(outputs)
92
93
94
95
96
97
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation)):
            # Instance segmentation (maskformer) have a slot for null class
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
98
99
100
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
101

102
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
103

104
        # RGBA
105
        outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
106
107
108
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
109
        outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
110
111
112
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
113
        outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
114
115
116
117
118
119
120
121
122
123
124
125
126
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
127
        batch = [
128
129
130
131
132
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
133
        ]
134
135
136
        outputs = image_segmenter(
            batch, threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0, batch_size=batch_size
        )
137
        self.assertEqual(len(batch), len(outputs))
138
        self.assertEqual(len(outputs[0]), n)
139
140
        self.assertEqual(
            [
141
142
143
144
145
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
146
            ],
147
148
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
149
150
151
152
153
154
155
156
157
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

    @require_torch
    def test_small_model_pt(self):
158
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
159
160
161

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
162
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
163

164
165
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
166
167
168
169
            subtask="panoptic",
            threshold=0.0,
            mask_threshold=0.0,
            overlap_mask_area_threshold=0.0,
170
171
172
        )

        # Shortening by hashing
173
        for o in outputs:
174
            o["mask"] = mask_to_test_readable(o["mask"])
175
176
177
178
179

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
180
                    "score": 0.004,
181
                    "label": "LABEL_215",
182
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
183
                },
184
            ],
185
186
187
188
189
190
191
192
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            threshold=0.0,
193
194
            mask_threshold=0.0,
            overlap_mask_area_threshold=0.0,
195
196
197
        )
        for output in outputs:
            for o in output:
198
                o["mask"] = mask_to_test_readable(o["mask"])
199
200
201
202
203
204

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
205
                        "score": 0.004,
206
                        "label": "LABEL_215",
207
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
208
209
210
211
                    },
                ],
                [
                    {
212
                        "score": 0.004,
213
                        "label": "LABEL_215",
214
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
215
                    },
216
                ],
217
218
219
            ],
        )

220
221
222
223
224
225
226
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
227
            o["mask"] = mask_to_test_readable(o["mask"])
228
229
230
231

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
232
233
234
235
236
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
                },
237
238
239
                {
                    "score": None,
                    "label": "LABEL_1",
240
                    "mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
241
242
243
244
                },
            ],
        )

245
246
247
248
249
250
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

251
252
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
253
            subtask="panoptic",
254
255
256
257
258
            threshold=0,
            overlap_mask_area_threshold=0.0,
        )

        # Shortening by hashing
259
        for o in outputs:
260
            o["mask"] = mask_to_test_readable(o["mask"])
261
262
263
264

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                {
                    "score": 0.9094,
                    "label": "blanket",
                    "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                },
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
295
296
297
298
299
300
301
302
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
303
            subtask="panoptic",
304
            threshold=0.0,
305
            overlap_mask_area_threshold=0.0,
306
        )
307
308

        # Shortening by hashing
309
310
        for output in outputs:
            for o in output:
311
                o["mask"] = mask_to_test_readable(o["mask"])
312
313
314
315
316

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
347
348
                ],
                [
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
379
380
381
382
383
384
385
386
387
388
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

389
        outputs = image_segmenter(
390
            "http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic", threshold=0.999
391
392
393
        )
        # Shortening by hashing
        for o in outputs:
394
            o["mask"] = mask_to_test_readable(o["mask"])
395
396
397
398

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
399
400
401
402
403
404
405
406
407
408
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
                },
409
410
411
412
            ],
        )

        outputs = image_segmenter(
413
            "http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic", threshold=0.5
414
        )
415
416

        for o in outputs:
417
            o["mask"] = mask_to_test_readable(o["mask"])
418
419
420
421

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
447
448
            ],
        )
449
450
451
452

    @require_torch
    @slow
    def test_maskformer(self):
453
        threshold = 0.8
454
455
        model_id = "facebook/maskformer-swin-base-ade"

456
457
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
458
459
460
461

        image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
462
        file = image[0]["file"]
463
        outputs = image_segmenter(file, subtask="panoptic", threshold=threshold)
464

465
        # Shortening by hashing
466
        for o in outputs:
467
            o["mask"] = mask_to_test_readable(o["mask"])
468
469
470
471

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
                {
                    "score": 0.9974,
                    "label": "wall",
                    "mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
                },
                {
                    "score": 0.949,
                    "label": "house",
                    "mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
                },
                {
                    "score": 0.9995,
                    "label": "grass",
                    "mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
                },
                {
                    "score": 0.9976,
                    "label": "tree",
                    "mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
                },
                {
                    "score": 0.8239,
                    "label": "plant",
                    "mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
                },
                {
                    "score": 0.9942,
                    "label": "road, route",
                    "mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
                },
                {
                    "score": 1.0,
                    "label": "sky",
                    "mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
                },
507
508
            ],
        )