test_pipelines_image_segmentation.py 23.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest
17
from typing import Dict
18

19
import datasets
20
import numpy as np
21
from datasets import load_dataset
22

23
import requests
24
25
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
26
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
27
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
28
    AutoFeatureExtractor,
29
    AutoImageProcessor,
30
    AutoModelForImageSegmentation,
31
    AutoModelForInstanceSegmentation,
32
    DetrForSegmentation,
33
    ImageSegmentationPipeline,
34
    MaskFormerForInstanceSegmentation,
35
36
37
    is_vision_available,
    pipeline,
)
38
from transformers.testing_utils import nested_simplify, require_tf, require_timm, require_torch, require_vision, slow
39
40
41
42
43
44
45
46
47
48
49
50
51
52

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


53
54
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
55
56
57
58
59
60
61
62
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    white_pixels = (npimg == 255).sum()
    shape = npimg.shape
    return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
63
64


65
66
67
68
69
70
def mask_to_test_readable_only_shape(mask: Image) -> Dict:
    npimg = np.array(mask)
    shape = npimg.shape
    return {"shape": shape}


71
72
73
74
@require_vision
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
75
76
77
78
79
80
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
81
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
82
    }
83

84
85
86
87
    def get_test_pipeline(self, model, tokenizer, feature_extractor, image_processor):
        image_segmenter = ImageSegmentationPipeline(
            model=model, feature_extractor=feature_extractor, image_processor=image_processor
        )
88
89
90
91
92
93
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
94
95
96
97
98
99
        outputs = image_segmenter(
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
        )
100
101
        self.assertIsInstance(outputs, list)
        n = len(outputs)
102
103
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation, DetrForSegmentation)):
            # Instance segmentation (maskformer, and detr) have a slot for null class
104
105
106
107
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
108
109
110
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
111

112
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
113

114
        # RGBA
115
        outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
116
117
118
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
119
        outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
120
121
122
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
123
        outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
124
125
126
127
128
129
130
131
132
133
134
135
136
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
137
        batch = [
138
139
140
141
142
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
143
        ]
144
        outputs = image_segmenter(
145
146
147
148
149
            batch,
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
            batch_size=batch_size,
150
        )
151
        self.assertEqual(len(batch), len(outputs))
152
        self.assertEqual(len(outputs[0]), n)
153
154
        self.assertEqual(
            [
155
156
157
158
159
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
160
            ],
161
162
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
163
164
165
166
167
168
169
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    @require_torch
    def test_small_model_pt_no_panoptic(self):
        model_id = "hf-internal-testing/tiny-random-mobilevit"
        # The default task is `image-classification` we need to override
        pipe = pipeline(task="image-segmentation", model=model_id)

        # This model does NOT support neither `instance` nor  `panoptic`
        # We should error out
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic")
        self.assertEqual(
            str(e.exception),
            "Subtask panoptic is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        self.assertEqual(
            str(e.exception),
            "Subtask instance is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )

193
194
    @require_torch
    def test_small_model_pt(self):
195
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
196
197

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
198
        image_processor = AutoImageProcessor.from_pretrained(model_id)
199
200
        image_segmenter = ImageSegmentationPipeline(
            model=model,
201
            image_processor=image_processor,
202
203
204
205
            subtask="panoptic",
            threshold=0.0,
            mask_threshold=0.0,
            overlap_mask_area_threshold=0.0,
206
207
        )

208
209
210
211
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

212
        # Shortening by hashing
213
        for o in outputs:
214
            o["mask"] = mask_to_test_readable(o["mask"])
215

216
        # This is extremely brittle, and those values are made specific for the CI.
217
218
219
220
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
221
                    "score": 0.004,
222
                    "label": "LABEL_215",
223
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
224
                },
225
            ],
226
227
228
229
230
231
232
233
234
235
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
        for output in outputs:
            for o in output:
236
                o["mask"] = mask_to_test_readable(o["mask"])
237
238
239
240
241
242

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
243
                        "score": 0.004,
244
                        "label": "LABEL_215",
245
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
246
247
248
249
                    },
                ],
                [
                    {
250
                        "score": 0.004,
251
                        "label": "LABEL_215",
252
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
253
                    },
254
                ],
255
256
257
            ],
        )

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        for o in output:
            o["mask"] = mask_to_test_readable(o["mask"])
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "score": 0.004,
                    "label": "LABEL_215",
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
                },
            ],
        )

        # This must be surprising to the reader.
        # The `panoptic` returns only LABEL_215, and this returns 3 labels.
        #
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="semantic")
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

        output_masks = [o["mask"] for o in output]

        # page links (to visualize)
        expected_masks = [
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_0.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_1.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_2.png",
        ]
        # actual links to get files
        expected_masks = [x.replace("/blob/", "/resolve/") for x in expected_masks]
        expected_masks = [Image.open(requests.get(image, stream=True).raw) for image in expected_masks]

        # Convert masks to numpy array
        output_masks = [np.array(x) for x in output_masks]
        expected_masks = [np.array(x) for x in expected_masks]

        self.assertEqual(output_masks[0].shape, expected_masks[0].shape)
        self.assertEqual(output_masks[1].shape, expected_masks[1].shape)
        self.assertEqual(output_masks[2].shape, expected_masks[2].shape)

        # With un-trained tiny random models, the output `logits` tensor is very likely to contain many values
        # close to each other, which cause `argmax` to give quite different results when running the test on 2
        # environments. We use a lower threshold `0.9` here to avoid flakiness.
        self.assertGreaterEqual(np.mean(output_masks[0] == expected_masks[0]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[1] == expected_masks[1]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[2] == expected_masks[2]), 0.9)

304
        for o in output:
305
            o["mask"] = mask_to_test_readable_only_shape(o["mask"])
306
307
308
309
310
311
        self.maxDiff = None
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "label": "LABEL_88",
312
                    "mask": {"shape": (480, 640)},
313
314
315
316
                    "score": None,
                },
                {
                    "label": "LABEL_101",
317
                    "mask": {"shape": (480, 640)},
318
319
320
321
                    "score": None,
                },
                {
                    "label": "LABEL_215",
322
                    "mask": {"shape": (480, 640)},
323
324
325
326
327
                    "score": None,
                },
            ],
        )

328
329
330
331
332
333
334
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
335
            o["mask"] = mask_to_test_readable(o["mask"])
336
337
338
339

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
340
341
342
343
344
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
                },
345
346
347
                {
                    "score": None,
                    "label": "LABEL_1",
348
                    "mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
349
350
351
352
                },
            ],
        )

353
354
355
356
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"
357
358
359
360
361
362
        image_segmenter = pipeline(
            "image-segmentation",
            model=model_id,
            threshold=0.0,
            overlap_mask_area_threshold=0.0,
        )
363

364
365
366
367
368
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

        # Shortening by hashing
369
        for o in outputs:
370
            o["mask"] = mask_to_test_readable(o["mask"])
371
372
373
374

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
                {
                    "score": 0.9094,
                    "label": "blanket",
                    "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                },
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
405
406
407
408
409
410
411
412
413
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
414
415

        # Shortening by hashing
416
417
        for output in outputs:
            for o in output:
418
                o["mask"] = mask_to_test_readable(o["mask"])
419
420
421
422
423

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
454
455
                ],
                [
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
486
487
488
489
490
491
492
493
494
495
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

496
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.999)
497
498
        # Shortening by hashing
        for o in outputs:
499
            o["mask"] = mask_to_test_readable(o["mask"])
500
501
502
503

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
504
505
506
507
508
509
510
511
512
513
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
                },
514
515
516
            ],
        )

517
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.5)
518
519

        for o in outputs:
520
            o["mask"] = mask_to_test_readable(o["mask"])
521
522
523
524

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
550
551
            ],
        )
552
553
554
555

    @require_torch
    @slow
    def test_maskformer(self):
556
        threshold = 0.8
557
558
        model_id = "facebook/maskformer-swin-base-ade"

559
560
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
561
562
563
564

        image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
565
        file = image[0]["file"]
566
        outputs = image_segmenter(file, threshold=threshold)
567

568
        # Shortening by hashing
569
        for o in outputs:
570
            o["mask"] = mask_to_test_readable(o["mask"])
571
572
573
574

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
                {
                    "score": 0.9974,
                    "label": "wall",
                    "mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
                },
                {
                    "score": 0.949,
                    "label": "house",
                    "mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
                },
                {
                    "score": 0.9995,
                    "label": "grass",
                    "mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
                },
                {
                    "score": 0.9976,
                    "label": "tree",
                    "mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
                },
                {
                    "score": 0.8239,
                    "label": "plant",
                    "mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
                },
                {
                    "score": 0.9942,
                    "label": "road, route",
                    "mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
                },
                {
                    "score": 1.0,
                    "label": "sky",
                    "mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
                },
610
611
            ],
        )