test_pipelines_image_segmentation.py 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest

18
import datasets
19
from datasets import load_dataset
20

21
22
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
23
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
24
25
    AutoFeatureExtractor,
    AutoModelForImageSegmentation,
26
    DetrForSegmentation,
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    ImageSegmentationPipeline,
    is_vision_available,
    pipeline,
)
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_timm,
    require_torch,
    require_vision,
    slow,
)

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


54
55
56
57
58
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
    return m.hexdigest()


59
60
61
62
63
@require_vision
@require_timm
@require_torch
@is_pipeline_test
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
64
65
66
67
68
69
70
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
    }
71

72
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
73
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
74
75
76
77
78
79
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
80
        outputs = image_segmenter("./tests/fixtures/tests_samples/COCO/000000039769.png", threshold=0.0)
81
82
83
84
85
86
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertGreater(n, 1)
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
87

88
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        # RGBA
        outputs = image_segmenter(dataset[0]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
        outputs = image_segmenter(dataset[1]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
        outputs = image_segmenter(dataset[2]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
113
        batch = [
114
115
116
117
118
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
119
        ]
120
        outputs = image_segmenter(batch, threshold=0.0, batch_size=batch_size)
121
        self.assertEqual(len(batch), len(outputs))
122
123
        self.assertEqual({"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}, outputs[0][0])
        self.assertEqual(len(outputs[0]), n)
124
125
        self.assertEqual(
            [
126
127
128
129
130
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
131
            ],
132
133
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

    @require_torch
    def test_small_model_pt(self):
        model_id = "mishig/tiny-detr-mobilenetsv3-panoptic"

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)

        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.0)
        for o in outputs:
            # shortening by hashing
152
            o["mask"] = hashimage(o["mask"])
153
154
155
156
157
158
159

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.004,
                    "label": "LABEL_0",
160
                    "mask": "34eecd16bbfb0f476083ef947d81bf66",
161
162
163
164
                },
                {
                    "score": 0.004,
                    "label": "LABEL_0",
165
                    "mask": "34eecd16bbfb0f476083ef947d81bf66",
166
167
168
169
170
171
172
173
174
175
176
177
178
                },
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            threshold=0.0,
        )
        for output in outputs:
            for o in output:
179
                o["mask"] = hashimage(o["mask"])
180
181
182
183
184
185
186
187

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
                        "score": 0.004,
                        "label": "LABEL_0",
188
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
189
190
191
192
                    },
                    {
                        "score": 0.004,
                        "label": "LABEL_0",
193
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
194
195
196
197
198
199
                    },
                ],
                [
                    {
                        "score": 0.004,
                        "label": "LABEL_0",
200
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
201
202
203
204
                    },
                    {
                        "score": 0.004,
                        "label": "LABEL_0",
205
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
206
207
208
209
210
                    },
                ],
            ],
        )

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
            o["mask"] = hashimage(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": None,
                    "label": "LABEL_0",
226
                    "mask": "6225140faf502d272af076222776d7e4",
227
228
229
230
                },
                {
                    "score": None,
                    "label": "LABEL_1",
231
                    "mask": "8297c9f8eb43ddd3f32a6dae21e015a1",
232
233
234
235
                },
            ],
        )

236
237
238
239
240
241
242
243
244
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"

        image_segmenter = pipeline("image-segmentation", model=model_id)

        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
245
            o["mask"] = hashimage(o["mask"])
246
247
248
249

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
250
251
252
253
254
255
                {"score": 0.9094, "label": "blanket", "mask": "85144e4bf8d624c2c6175f7faf57eb30"},
                {"score": 0.9941, "label": "cat", "mask": "f3a7f80220788acc0245ebc084df6afc"},
                {"score": 0.9987, "label": "remote", "mask": "7703408f54da1d0ebda47841da875e48"},
                {"score": 0.9995, "label": "remote", "mask": "bd726918f10fed3efaef0091e11f923b"},
                {"score": 0.9722, "label": "couch", "mask": "226d6dcb98bebc3fbc208abdc0c83196"},
                {"score": 0.9994, "label": "cat", "mask": "fa5d8d5c329546ba5339f3095641ef56"},
256
257
258
259
260
261
262
263
264
265
266
267
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            threshold=0.0,
        )
        for output in outputs:
            for o in output:
268
                o["mask"] = hashimage(o["mask"])
269
270
271
272
273

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
274
275
276
277
278
279
                    {"score": 0.9094, "label": "blanket", "mask": "85144e4bf8d624c2c6175f7faf57eb30"},
                    {"score": 0.9941, "label": "cat", "mask": "f3a7f80220788acc0245ebc084df6afc"},
                    {"score": 0.9987, "label": "remote", "mask": "7703408f54da1d0ebda47841da875e48"},
                    {"score": 0.9995, "label": "remote", "mask": "bd726918f10fed3efaef0091e11f923b"},
                    {"score": 0.9722, "label": "couch", "mask": "226d6dcb98bebc3fbc208abdc0c83196"},
                    {"score": 0.9994, "label": "cat", "mask": "fa5d8d5c329546ba5339f3095641ef56"},
280
281
                ],
                [
282
283
284
285
286
287
                    {"score": 0.9094, "label": "blanket", "mask": "85144e4bf8d624c2c6175f7faf57eb30"},
                    {"score": 0.9941, "label": "cat", "mask": "f3a7f80220788acc0245ebc084df6afc"},
                    {"score": 0.9987, "label": "remote", "mask": "7703408f54da1d0ebda47841da875e48"},
                    {"score": 0.9995, "label": "remote", "mask": "bd726918f10fed3efaef0091e11f923b"},
                    {"score": 0.9722, "label": "couch", "mask": "226d6dcb98bebc3fbc208abdc0c83196"},
                    {"score": 0.9994, "label": "cat", "mask": "fa5d8d5c329546ba5339f3095641ef56"},
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        threshold = 0.999
        model_id = "facebook/detr-resnet-50-panoptic"

        image_segmenter = pipeline("image-segmentation", model=model_id)

        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=threshold)

        for o in outputs:
303
            o["mask"] = hashimage(o["mask"])
304
305
306
307

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
308
309
                {"score": 0.9995, "label": "remote", "mask": "bd726918f10fed3efaef0091e11f923b"},
                {"score": 0.9994, "label": "cat", "mask": "fa5d8d5c329546ba5339f3095641ef56"},
310
311
            ],
        )
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

    @require_torch
    @slow
    def test_maskformer(self):
        threshold = 0.999
        model_id = "facebook/maskformer-swin-base-ade"

        from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation

        model = MaskFormerForInstanceSegmentation.from_pretrained(model_id)
        feature_extractor = MaskFormerFeatureExtractor.from_pretrained(model_id)

        image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        outputs = image_segmenter(image[0]["file"], threshold=threshold)

        for o in outputs:
            o["mask"] = hashimage(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"mask": "20d1b9480d1dc1501dbdcfdff483e370", "label": "wall", "score": None},
                {"mask": "0f902fbc66a0ff711ea455b0e4943adf", "label": "house", "score": None},
                {"mask": "4537bdc07d47d84b3f8634b7ada37bd4", "label": "grass", "score": None},
                {"mask": "b7ac77dfae44a904b479a0926a2acaf7", "label": "tree", "score": None},
                {"mask": "e9bedd56bd40650fb263ce03eb621079", "label": "plant", "score": None},
                {"mask": "37a609f8c9c1b8db91fbff269f428b20", "label": "road, route", "score": None},
                {"mask": "0d8cdfd63bae8bf6e4344d460a2fa711", "label": "sky", "score": None},
            ],
        )