test_pipelines_image_segmentation.py 26.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest
17
from typing import Dict
18

19
import datasets
20
import numpy as np
21
import requests
22
from datasets import load_dataset
23

24
25
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
26
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
27
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
28
    AutoImageProcessor,
29
    AutoModelForImageSegmentation,
30
    AutoModelForInstanceSegmentation,
31
    DetrForSegmentation,
32
    ImageSegmentationPipeline,
33
    MaskFormerForInstanceSegmentation,
34
35
36
    is_vision_available,
    pipeline,
)
37
38
39
40
41
42
43
44
45
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_timm,
    require_torch,
    require_vision,
    slow,
)
46

47
from .test_pipelines_common import ANY
48
49
50
51
52
53
54
55
56
57
58
59


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


60
61
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
62
63
64
65
66
67
68
69
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    white_pixels = (npimg == 255).sum()
    shape = npimg.shape
    return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
70
71


72
73
74
75
76
77
def mask_to_test_readable_only_shape(mask: Image) -> Dict:
    npimg = np.array(mask)
    shape = npimg.shape
    return {"shape": shape}


78
@is_pipeline_test
79
80
81
@require_vision
@require_timm
@require_torch
82
class ImageSegmentationPipelineTests(unittest.TestCase):
Sylvain's avatar
Sylvain committed
83
    model_mapping = dict((
84
85
86
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
Sylvain's avatar
Sylvain committed
87
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else []))
88

89
90
    def get_test_pipeline(self, model, tokenizer, processor):
        image_segmenter = ImageSegmentationPipeline(model=model, image_processor=processor)
91
92
93
94
95
96
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
97
98
99
100
101
102
        outputs = image_segmenter(
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
        )
103
104
        self.assertIsInstance(outputs, list)
        n = len(outputs)
105
106
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation, DetrForSegmentation)):
            # Instance segmentation (maskformer, and detr) have a slot for null class
107
108
109
110
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
111
112
113
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
114

115
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
116

117
        # RGBA
118
        outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
119
120
121
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
122
        outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
123
124
125
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
126
        outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
127
128
129
130
131
132
133
134
135
136
137
138
139
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
140
        batch = [
141
142
143
144
145
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
146
        ]
147
        outputs = image_segmenter(
148
149
150
151
152
            batch,
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
            batch_size=batch_size,
153
        )
154
        self.assertEqual(len(batch), len(outputs))
155
        self.assertEqual(len(outputs[0]), n)
156
157
        self.assertEqual(
            [
158
159
160
161
162
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
163
            ],
164
165
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
166
167
168
169
170
171
172
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    @require_torch
    def test_small_model_pt_no_panoptic(self):
        model_id = "hf-internal-testing/tiny-random-mobilevit"
        # The default task is `image-classification` we need to override
        pipe = pipeline(task="image-segmentation", model=model_id)

        # This model does NOT support neither `instance` nor  `panoptic`
        # We should error out
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic")
        self.assertEqual(
            str(e.exception),
            "Subtask panoptic is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        self.assertEqual(
            str(e.exception),
            "Subtask instance is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )

196
197
    @require_torch
    def test_small_model_pt(self):
198
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
199
200

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
201
        image_processor = AutoImageProcessor.from_pretrained(model_id)
202
203
        image_segmenter = ImageSegmentationPipeline(
            model=model,
204
            image_processor=image_processor,
205
206
207
208
            subtask="panoptic",
            threshold=0.0,
            mask_threshold=0.0,
            overlap_mask_area_threshold=0.0,
209
210
        )

211
212
213
214
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

215
        # Shortening by hashing
216
        for o in outputs:
217
            o["mask"] = mask_to_test_readable(o["mask"])
218

219
        # This is extremely brittle, and those values are made specific for the CI.
220
221
222
223
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
224
                    "score": 0.004,
225
                    "label": "LABEL_215",
226
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
227
                },
228
            ],
229
230
231
232
233
234
235
236
237
238
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
        for output in outputs:
            for o in output:
239
                o["mask"] = mask_to_test_readable(o["mask"])
240
241
242
243
244
245

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
246
                        "score": 0.004,
247
                        "label": "LABEL_215",
248
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
249
250
251
252
                    },
                ],
                [
                    {
253
                        "score": 0.004,
254
                        "label": "LABEL_215",
255
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
256
                    },
257
                ],
258
259
260
            ],
        )

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        for o in output:
            o["mask"] = mask_to_test_readable(o["mask"])
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "score": 0.004,
                    "label": "LABEL_215",
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
                },
            ],
        )

        # This must be surprising to the reader.
        # The `panoptic` returns only LABEL_215, and this returns 3 labels.
        #
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="semantic")
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

        output_masks = [o["mask"] for o in output]

        # page links (to visualize)
        expected_masks = [
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_0.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_1.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_2.png",
        ]
        # actual links to get files
        expected_masks = [x.replace("/blob/", "/resolve/") for x in expected_masks]
        expected_masks = [Image.open(requests.get(image, stream=True).raw) for image in expected_masks]

        # Convert masks to numpy array
        output_masks = [np.array(x) for x in output_masks]
        expected_masks = [np.array(x) for x in expected_masks]

        self.assertEqual(output_masks[0].shape, expected_masks[0].shape)
        self.assertEqual(output_masks[1].shape, expected_masks[1].shape)
        self.assertEqual(output_masks[2].shape, expected_masks[2].shape)

        # With un-trained tiny random models, the output `logits` tensor is very likely to contain many values
        # close to each other, which cause `argmax` to give quite different results when running the test on 2
        # environments. We use a lower threshold `0.9` here to avoid flakiness.
        self.assertGreaterEqual(np.mean(output_masks[0] == expected_masks[0]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[1] == expected_masks[1]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[2] == expected_masks[2]), 0.9)

307
        for o in output:
308
            o["mask"] = mask_to_test_readable_only_shape(o["mask"])
309
310
311
312
313
314
        self.maxDiff = None
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "label": "LABEL_88",
315
                    "mask": {"shape": (480, 640)},
316
317
318
319
                    "score": None,
                },
                {
                    "label": "LABEL_101",
320
                    "mask": {"shape": (480, 640)},
321
322
323
324
                    "score": None,
                },
                {
                    "label": "LABEL_215",
325
                    "mask": {"shape": (480, 640)},
326
327
328
329
330
                    "score": None,
                },
            ],
        )

331
332
333
334
335
336
337
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
338
            o["mask"] = mask_to_test_readable(o["mask"])
339
340
341
342

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
343
344
345
346
347
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
                },
348
349
350
                {
                    "score": None,
                    "label": "LABEL_1",
351
                    "mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
352
353
354
355
                },
            ],
        )

356
357
358
359
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"
360
361
362
363
364
365
        image_segmenter = pipeline(
            "image-segmentation",
            model=model_id,
            threshold=0.0,
            overlap_mask_area_threshold=0.0,
        )
366

367
368
369
370
371
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

        # Shortening by hashing
372
        for o in outputs:
373
            o["mask"] = mask_to_test_readable(o["mask"])
374
375
376
377

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
                {
                    "score": 0.9094,
                    "label": "blanket",
                    "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                },
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
408
409
410
411
412
413
414
415
416
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
417
418

        # Shortening by hashing
419
420
        for output in outputs:
            for o in output:
421
                o["mask"] = mask_to_test_readable(o["mask"])
422
423
424
425
426

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
457
458
                ],
                [
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
489
490
491
492
493
494
495
496
497
498
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

499
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.999)
500
501
        # Shortening by hashing
        for o in outputs:
502
            o["mask"] = mask_to_test_readable(o["mask"])
503
504
505
506

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
507
508
509
510
511
512
513
514
515
516
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
                },
517
518
519
            ],
        )

520
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.5)
521
522

        for o in outputs:
523
            o["mask"] = mask_to_test_readable(o["mask"])
524
525
526
527

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
553
554
            ],
        )
555
556
557
558

    @require_torch
    @slow
    def test_maskformer(self):
559
        threshold = 0.8
560
561
        model_id = "facebook/maskformer-swin-base-ade"

562
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
Yih-Dar's avatar
Yih-Dar committed
563
        image_processor = AutoImageProcessor.from_pretrained(model_id)
564

Yih-Dar's avatar
Yih-Dar committed
565
        image_segmenter = pipeline("image-segmentation", model=model, image_processor=image_processor)
566
567

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
568
        file = image[0]["file"]
569
        outputs = image_segmenter(file, threshold=threshold)
570

571
        # Shortening by hashing
572
        for o in outputs:
573
            o["mask"] = mask_to_test_readable(o["mask"])
574
575
576
577

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
                {
                    "score": 0.9974,
                    "label": "wall",
                    "mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
                },
                {
                    "score": 0.949,
                    "label": "house",
                    "mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
                },
                {
                    "score": 0.9995,
                    "label": "grass",
                    "mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
                },
                {
                    "score": 0.9976,
                    "label": "tree",
                    "mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
                },
                {
                    "score": 0.8239,
                    "label": "plant",
                    "mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
                },
                {
                    "score": 0.9942,
                    "label": "road, route",
                    "mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
                },
                {
                    "score": 1.0,
                    "label": "sky",
                    "mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
                },
613
614
            ],
        )
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

    @require_torch
    @slow
    def test_oneformer(self):
        image_segmenter = pipeline(model="shi-labs/oneformer_ade20k_swin_tiny")

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        file = image[0]["file"]
        outputs = image_segmenter(file, threshold=0.99)
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.9981,
                    "label": "grass",
                    "mask": {"hash": "3a92904d4c", "white_pixels": 118131, "shape": (512, 683)},
                },
                {
                    "score": 0.9992,
                    "label": "sky",
                    "mask": {"hash": "fa2300cc9a", "white_pixels": 231565, "shape": (512, 683)},
                },
            ],
        )

        # Different task
        outputs = image_segmenter(file, threshold=0.99, subtask="instance")
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.9991,
                    "label": "sky",
                    "mask": {"hash": "8b1ffad016", "white_pixels": 230566, "shape": (512, 683)},
                },
                {
                    "score": 0.9981,
                    "label": "grass",
                    "mask": {"hash": "9bbdf83d3d", "white_pixels": 119130, "shape": (512, 683)},
                },
            ],
        )

        # Different task
        outputs = image_segmenter(file, subtask="semantic")
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": None,
                    "label": "wall",
                    "mask": {"hash": "897fb20b7f", "white_pixels": 14506, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "building",
                    "mask": {"hash": "f2a68c63e4", "white_pixels": 125019, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "sky",
                    "mask": {"hash": "e0ca3a548e", "white_pixels": 135330, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "tree",
                    "mask": {"hash": "7c9544bcac", "white_pixels": 16263, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "road, route",
                    "mask": {"hash": "2c7704e491", "white_pixels": 2143, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "grass",
                    "mask": {"hash": "bf6c2867e0", "white_pixels": 53040, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "plant",
                    "mask": {"hash": "93c4b7199e", "white_pixels": 3335, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "house",
                    "mask": {"hash": "93ec419ad5", "white_pixels": 60, "shape": (512, 683)},
                },
            ],
        )