test_utils.py 151 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import copy
18
import inspect
19
import tempfile
20
import unittest
21
import warnings
22

23
import numpy as np
24
from parameterized import parameterized
25

26
from transformers import is_torch_available, pipeline, set_seed
27
from transformers.testing_utils import (
28
    is_flaky,
29
    require_accelerate,
Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
30
    require_auto_gptq,
31
    require_quanto,
32
    require_torch,
jiqing-feng's avatar
jiqing-feng committed
33
    require_torch_gpu,
34
    require_torch_multi_accelerator,
jiqing-feng's avatar
jiqing-feng committed
35
    require_torch_multi_gpu,
36
37
38
    slow,
    torch_device,
)
39

40
from ..test_modeling_common import floats_tensor, ids_tensor
41
from .test_framework_agnostic import GenerationIntegrationTestsMixin
42

43
44
45
46

if is_torch_available():
    import torch

47
    from transformers import (
48
        AutoModelForCausalLM,
49
        AutoModelForSeq2SeqLM,
50
51
        AutoModelForSpeechSeq2Seq,
        AutoModelForVision2Seq,
52
        AutoProcessor,
53
        AutoTokenizer,
54
        BartForCausalLM,
55
56
57
58
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
59
        ImageGPTForCausalImageModeling,
60
        SpeechEncoderDecoderModel,
61
    )
62
    from transformers.cache_utils import DynamicCache, EncoderDecoderCache, QuantoQuantizedCache
63
64
65
66
67
68
    from transformers.generation import (
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        DisjunctiveConstraint,
69
70
71
72
        GenerateBeamDecoderOnlyOutput,
        GenerateBeamEncoderDecoderOutput,
        GenerateDecoderOnlyOutput,
        GenerateEncoderDecoderOutput,
73
        GenerationConfig,
74
75
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
76
        LogitsProcessorList,
77
        MaxLengthCriteria,
78
        MinLengthLogitsProcessor,
79
        PhrasalConstraint,
80
        PromptLookupCandidateGenerator,
81
82
83
84
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
        StoppingCriteria,
        StoppingCriteriaList,
85
86
        WatermarkDetector,
        WatermarkingConfig,
87
    )
88
    from transformers.generation.utils import _speculative_sampling
89
90
91
92
93


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
94
    input_name = "input_ids"
95
    max_new_tokens = 3
96

97
    def _get_input_ids_and_config(self, batch_size=2):
98
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Suraj Patil's avatar
Suraj Patil committed
99
        input_ids = inputs_dict[self.input_name]
100

101
        input_ids = input_ids[:batch_size]
102
103
104

        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
105
106
107
            if isinstance(config.eos_token_id, int):
                config.eos_token_id = [config.eos_token_id]
            config.pad_token_id = config.eos_token_id[0]
108
109
110
111
112

        if self.has_attentions:
            attention_mask = torch.ones_like(input_ids, dtype=torch.long)
        else:
            attention_mask = None
113

114
115
116
117
118
        # It is important set set the eos_token_id to None to ensure that no sequences
        # shorter than `max_length` can be generated
        config.eos_token_id = None
        config.forced_eos_token_id = None

119
        return config, input_ids, attention_mask
120
121

    @staticmethod
122
    def _get_logits_processor_and_warper_kwargs(
123
124
125
126
        input_length,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
    ):
127
128
129
        process_kwargs = {
            "bad_words_ids": [[1, 0]],
            "repetition_penalty": 1.2,
130
            "remove_invalid_values": True,
131
        }
132
133
134
135
        # NoRepeatNGramLogitsProcessor + forced tokens may result in no valid continuations
        if forced_bos_token_id is None and forced_eos_token_id is None:
            process_kwargs["no_repeat_ngram_size"] = 2

136
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
137
        return process_kwargs, warp_kwargs
138
139

    @staticmethod
140
    def _get_beam_kwargs(num_return_sequences=1):
141
142
143
144
145
146
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
147
        return beam_kwargs
148

149
    @staticmethod
150
    def _get_diverse_beam_kwargs(num_return_sequences=1):
151
152
153
154
155
156
157
158
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
159
        return beam_kwargs
160

161
    @staticmethod
162
    def _get_constrained_beam_kwargs(num_return_sequences=1):
163
164
165
166
167
168
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": num_return_sequences * 4,
            "num_return_sequences": num_return_sequences,
        }
169
        return beam_kwargs
170

171
    @staticmethod
172
173
174
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
175
        encoder = model.get_encoder()
176
177
178
179
180
181
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
182
183
184
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
185
186
187
        generation_config = copy.deepcopy(model.generation_config)
        model._prepare_special_tokens(generation_config)
        input_ids = torch.zeros_like(input_ids[:, :1]) + generation_config.decoder_start_token_id
188
189
190
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

191
192
193
194
195
196
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        output_scores=False,
197
        output_logits=False,
198
199
200
201
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
202
        logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
203
204
205
            input_ids.shape[-1],
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
206
207
        )

208
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
209
210
211
212
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
213
            max_new_tokens=self.max_new_tokens,
214
215
216
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
217
            output_logits=output_logits,
218
219
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
220
            **model_kwargs,
221
222
        )

223
        return output_generate
224
225
226
227
228
229
230
231
232
233

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        num_return_sequences,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
234
        output_logits=False,
235
236
237
238
239
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
240
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
241
242
243
244
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
245
            max_new_tokens=self.max_new_tokens,
246
247
            num_return_sequences=num_return_sequences,
            output_scores=output_scores,
248
            output_logits=output_logits,
249
250
251
252
253
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **logits_warper_kwargs,
            **process_kwargs,
254
            **model_kwargs,
255
256
        )

257
        return output_generate
258
259
260
261
262
263
264
265
266

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
267
        output_logits=False,
268
269
270
271
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
272
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
273
274
275
        output_generate = model.generate(
            input_ids,
            do_sample=False,
276
            max_new_tokens=self.max_new_tokens,
277
            output_scores=output_scores,
278
            output_logits=output_logits,
279
280
281
282
283
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
284
            **model_kwargs,
285
286
        )

287
        return output_generate
288
289
290
291
292
293
294
295
296

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_warper_kwargs,
        output_scores=False,
297
        output_logits=False,
298
299
300
301
302
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
303
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
304
305
306
        output_generate = model.generate(
            input_ids,
            do_sample=True,
307
            max_new_tokens=self.max_new_tokens,
308
            output_scores=output_scores,
309
            output_logits=output_logits,
310
311
312
313
314
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_warper_kwargs,
315
            **model_kwargs,
316
317
        )

318
        return output_generate
319
320
321
322
323
324
325
326
327

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
328
        output_logits=False,
329
330
331
332
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
333
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
334
335
336
        output_generate = model.generate(
            input_ids,
            do_sample=False,
337
            max_new_tokens=self.max_new_tokens,
338
            output_scores=output_scores,
339
            output_logits=output_logits,
340
341
342
343
344
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
345
            **model_kwargs,
346
347
        )

348
        return output_generate
349

350
351
352
353
354
355
356
357
358
    def _constrained_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        constraints,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
359
        output_logits=False,
360
361
362
363
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
364
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
365
366
367
        output_generate = model.generate(
            input_ids,
            do_sample=False,
368
            max_new_tokens=self.max_new_tokens,
369
            output_scores=output_scores,
370
            output_logits=output_logits,
371
372
373
374
375
376
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            constraints=constraints,
            **beam_kwargs,
            **logits_process_kwargs,
377
            **model_kwargs,
378
379
        )

380
        return output_generate
381

382
383
384
385
386
387
    def _contrastive_generate(
        self,
        model,
        input_ids,
        attention_mask,
        output_scores=False,
388
        output_logits=False,
389
390
391
392
393
394
395
396
397
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        contrastive_search_kwargs = {
            "penalty_alpha": 0.6,
            "top_k": 5,
        }

398
        logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
399
400
401
402
403
404
405
406
407
408
            input_ids.shape[-1],
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
        )

        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
409
            max_new_tokens=self.max_new_tokens,
410
411
412
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
413
            output_logits=output_logits,
414
415
416
417
418
419
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
            **model_kwargs,
            **contrastive_search_kwargs,
        )

420
        return output_generate
421

422
423
    def test_greedy_generate(self):
        for model_class in self.all_generative_model_classes:
424
            config, input_ids, attention_mask = self._get_input_ids_and_config()
425

426
            model = model_class(config).to(torch_device).eval()
427
            output_generate = self._greedy_generate(model=model, input_ids=input_ids, attention_mask=attention_mask)
428

429
430
431
432
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
433

434
435
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
436
            config, input_ids, attention_mask = self._get_input_ids_and_config()
437

438
439
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
440
            output_generate = self._greedy_generate(
441
442
443
444
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_scores=True,
445
                output_logits=True,
446
                output_hidden_states=True,
447
                output_attentions=self.has_attentions,
448
449
                return_dict_in_generate=True,
            )
450
451

            if model.config.is_encoder_decoder:
452
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
453
454
                self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
                # Retrocompatibility check
455
456
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
457
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
458
459
                self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
                # Retrocompatibility check
460
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
461

462
            self._check_outputs(output_generate, input_ids, model.config)
463
464
465

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
466
            config, input_ids, attention_mask = self._get_input_ids_and_config()
467
468

            if not hasattr(config, "use_cache"):
amyeroberts's avatar
amyeroberts committed
469
                self.skipTest(reason="This model doesn't support caching")
470
            if any(model_name in model_class.__name__.lower() for model_name in ["rwkv"]):
amyeroberts's avatar
amyeroberts committed
471
                self.skipTest(reason="Won't fix: model with non-standard dictionary output shapes")
472
473

            config.use_cache = True
474
            config.is_decoder = True
475
            model = model_class(config).to(torch_device).eval()
476
            output_generate = self._greedy_generate(
477
478
                model=model,
                input_ids=input_ids,
479
                attention_mask=attention_mask,
480
                output_scores=True,
481
                output_logits=True,
482
                output_hidden_states=True,
483
                output_attentions=self.has_attentions,
484
                return_dict_in_generate=True,
485
            )
486

487
488
489
490
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
491
            self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
492
493
494

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
495
            config, input_ids, attention_mask = self._get_input_ids_and_config()
496

497
498
            model = model_class(config).to(torch_device).eval()
            process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
499
500
501
502
503
                input_ids.shape[-1],
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
            )

504
            output_generate = self._sample_generate(
505
506
507
508
509
510
511
512
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                num_return_sequences=1,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )

513
514
515
516
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
517

518
519
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
520
            config, input_ids, attention_mask = self._get_input_ids_and_config()
521

522
523
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
524

525
            process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
526
527
528
                input_ids.shape[-1],
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
529
            )
530

531
            output_generate = self._sample_generate(
532
533
                model=model,
                input_ids=input_ids,
534
                attention_mask=attention_mask,
535
536
537
538
                num_return_sequences=2,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
539
                output_logits=True,
540
                output_hidden_states=True,
541
                output_attentions=self.has_attentions,
542
                return_dict_in_generate=True,
543
544
545
            )

            if model.config.is_encoder_decoder:
546
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
547
548
                self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
                # Retrocompatibility check
549
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
550
            else:
551
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
552
553
                self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
                # Retrocompatibility check
554
555
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

556
            self._check_outputs(output_generate, input_ids, model.config, num_return_sequences=2)
557
558
559

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
560
            config, input_ids, attention_mask = self._get_input_ids_and_config()
561

562
            model = model_class(config).to(torch_device).eval()
563

564
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
565
566
567
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
568
            )
569
            beam_kwargs = self._get_beam_kwargs()
570

571
            output_generate = self._beam_search_generate(
572
573
                model=model,
                input_ids=input_ids,
574
                attention_mask=attention_mask,
575
576
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
577
            )
578

579
580
581
582
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
583
584
585

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
586
            config, input_ids, attention_mask = self._get_input_ids_and_config()
587
588

            # disable cache
589
            config.use_cache = False
590

591
            model = model_class(config).to(torch_device).eval()
592
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
593
594
595
596
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )
597
598
            beam_kwargs = self._get_beam_kwargs()
            output_generate = self._beam_search_generate(
599
600
                model=model,
                input_ids=input_ids,
601
                attention_mask=attention_mask,
602
603
604
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
605
                output_logits=True,
606
                output_hidden_states=True,
607
                output_attentions=self.has_attentions,
608
                return_dict_in_generate=True,
609
610
            )
            if model.config.is_encoder_decoder:
611
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
612
613
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
614
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
615
            else:
616
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
617
618
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
619
620
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

621
622
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
623
624
625
626
627
            )

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
628
            config, input_ids, attention_mask = self._get_input_ids_and_config()
629
630

            if not hasattr(config, "use_cache"):
amyeroberts's avatar
amyeroberts committed
631
                self.skipTest(reason="This model doesn't support caching")
632
            if any(model_name in model_class.__name__.lower() for model_name in ["rwkv"]):
amyeroberts's avatar
amyeroberts committed
633
                self.skipTest(reason="Won't fix: model with non-standard dictionary output shapes")
634
635

            model = model_class(config).to(torch_device).eval()
636
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
637
638
639
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
640
641
            )

642
            beam_kwargs = self._get_beam_kwargs()
643
644

            config.use_cache = True
645
            config.is_decoder = True
646
            model = model_class(config).to(torch_device).eval()
647
            output_generate = self._beam_search_generate(
648
649
650
651
652
653
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
654
                output_logits=True,
655
                output_hidden_states=True,
656
                output_attentions=self.has_attentions,
657
658
659
                return_dict_in_generate=True,
            )

660
661
662
663
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
664
665
666
            self._check_outputs(
                output_generate, input_ids, model.config, use_cache=True, num_return_sequences=beam_kwargs["num_beams"]
            )
667

668
    @require_accelerate
669
    @require_torch_multi_accelerator
670
671
    def test_model_parallel_beam_search(self):
        for model_class in self.all_generative_model_classes:
672
            if "xpu" in torch_device:
amyeroberts's avatar
amyeroberts committed
673
                return unittest.skip(reason="device_map='auto' does not work with XPU devices")
674

675
676
677
            if model_class._no_split_modules is None:
                continue

678
            config, input_ids, attention_mask = self._get_input_ids_and_config()
679
680
681
682
683
684
685
686
687

            model = model_class(config).eval()
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto")

                new_model.generate(
                    input_ids,
                    attention_mask=attention_mask,
688
                    max_new_tokens=self.max_new_tokens,
689
690
691
                    num_beams=2,
                )

692
693
    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
694
            config, input_ids, attention_mask = self._get_input_ids_and_config()
695

696
            _, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
697

698
            model = model_class(config).to(torch_device).eval()
699
            beam_kwargs = self._get_beam_kwargs()
700

701
            output_generate = self._beam_sample_generate(
702
703
                model=model,
                input_ids=input_ids,
704
                attention_mask=attention_mask,
705
706
                beam_kwargs=beam_kwargs,
                logits_warper_kwargs=logits_warper_kwargs,
707
            )
708

709
710
711
712
713
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])

714
715
716
717
718
719
720
721
722
723
724
725
            if "inputs_embeds" in set(inspect.signature(model.prepare_inputs_for_generation).parameters):
                input_embeds = model.get_input_embeddings()(input_ids)
                beam_kwargs.update({"inputs_embeds": input_embeds})
                output_generate2 = self._beam_sample_generate(
                    model=model,
                    input_ids=None,
                    attention_mask=attention_mask,
                    beam_kwargs=beam_kwargs,
                    logits_warper_kwargs=logits_warper_kwargs,
                )

                torch.testing.assert_close(output_generate[:, input_embeds.shape[1] :], output_generate2)
726
727
728

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
729
            config, input_ids, attention_mask = self._get_input_ids_and_config()
730
731

            # disable cache
732
            config.use_cache = False
733

734
            model = model_class(config).to(torch_device).eval()
735
736
            _, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
            beam_kwargs = self._get_beam_kwargs()
737

738
            output_generate = self._beam_sample_generate(
739
740
741
742
743
744
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
745
                output_logits=True,
746
                output_hidden_states=True,
747
                output_attentions=self.has_attentions,
748
749
750
751
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
752
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
753
754
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
755
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
756
            else:
757
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
758
759
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
760
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
761

762
763
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
764
            )
765

766
    def test_generate_without_input_ids(self):
767
        config, _, _ = self._get_input_ids_and_config()
768

769
770
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
amyeroberts's avatar
amyeroberts committed
771
            self.skipTest(reason="bos_token_id is None")
772

773
774
775
776
        # hack in case they are equal, otherwise the attn mask will be [0]
        if config.bos_token_id == config.pad_token_id:
            config.pad_token_id = None

777
778
779
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
780

781
782
783
            output_ids_generate = model.generate(
                do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True
            )
784
            self.assertIsNotNone(output_ids_generate)
785

786
787
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
788
            config, input_ids, attention_mask = self._get_input_ids_and_config()
789

790
            model = model_class(config).to(torch_device).eval()
791
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
792
793
794
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
795
796
797
            )

            # check `generate()` and `group_beam_search()` are equal
798
799
            beam_kwargs = self._get_diverse_beam_kwargs()
            output_generate = self._group_beam_search_generate(
800
801
                model=model,
                input_ids=input_ids,
802
                attention_mask=attention_mask,
803
804
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
805
            )
806
807
808
809
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
810

811
            # check `group_beam_search` for higher than 1 `num_return_sequences`
812
            num_return_sequences = 2
813
814
            beam_kwargs = self._get_diverse_beam_kwargs(num_return_sequences=num_return_sequences)
            output_generate = self._group_beam_search_generate(
815
816
817
818
819
820
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
821
822
823
824
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
825

826
827
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
828
            config, input_ids, attention_mask = self._get_input_ids_and_config()
829
            config.use_cache = False
830

831
            model = model_class(config).to(torch_device).eval()
832
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
833
834
835
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
836
837
            )

838
839
            beam_kwargs = self._get_diverse_beam_kwargs()
            output_generate = self._group_beam_search_generate(
840
841
                model=model,
                input_ids=input_ids,
842
                attention_mask=attention_mask,
843
844
845
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
846
                output_logits=True,
847
                output_hidden_states=True,
848
                output_attentions=self.has_attentions,
849
                return_dict_in_generate=True,
850
851
            )
            if model.config.is_encoder_decoder:
852
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
853
854
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
855
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
856
            else:
857
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
858
859
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
860
861
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

862
863
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
864
865
            )

866
867
    # TODO: @gante
    @is_flaky()
868
869
    def test_constrained_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
870
            config, input_ids, attention_mask = self._get_input_ids_and_config()
871
872
873

            model = model_class(config).to(torch_device).eval()

874
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
875
876
877
878
879
880
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )

            # Sample constraints
881
882
            min_id = 3
            max_id = config.vocab_size
883

884
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
885
886
887
888
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

889
890
            beam_kwargs = self._get_constrained_beam_kwargs()
            output_generate = self._constrained_beam_search_generate(
891
892
893
894
895
896
897
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
898
899
900
901
902
903

            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])

904
905
906
            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

907
            # check`constrained_beam_search` for higher than 1 `num_return_sequences`
908
            # Sample constraints
909
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
910
911
912
913
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

914
            beam_kwargs = self._get_constrained_beam_kwargs(num_return_sequences=2)
915

916
            output_generate = self._constrained_beam_search_generate(
917
918
919
920
921
922
923
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
924
925
926
927
928

            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
929
930
931
932
933
934

            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

    def test_constrained_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
935
            config, input_ids, attention_mask = self._get_input_ids_and_config()
936
937
938
939
940

            # disable cache
            config.use_cache = False

            model = model_class(config).to(torch_device).eval()
941
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
942
943
944
945
946
947
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )

            # Sample constraints
948
949
            min_id = 3
            max_id = model.config.vocab_size
950
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
951
952
953
954
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

955
956
            beam_kwargs = self._get_constrained_beam_kwargs()
            output_generate = self._constrained_beam_search_generate(
957
958
959
960
961
962
963
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
964
                output_logits=True,
965
                output_hidden_states=True,
966
                output_attentions=self.has_attentions,
967
968
969
970
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
971
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
972
973
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
974
975
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
            else:
976
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
977
978
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
979
980
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

981
982
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
983
984
            )

985
986
    def test_contrastive_generate(self):
        for model_class in self.all_generative_model_classes:
987
            if model_class._is_stateful:
amyeroberts's avatar
amyeroberts committed
988
                self.skipTest(reason="Stateful models don't support contrastive search generation")
989

990
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
991
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
amyeroberts's avatar
amyeroberts committed
992
                self.skipTest(reason="Won't fix: old model with different cache format")
993

994
            config, input_ids, attention_mask = self._get_input_ids_and_config()
995
996
997

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
amyeroberts's avatar
amyeroberts committed
998
                self.skipTest(reason="This model doesn't support caching")
999
1000
1001
1002
1003
            config.use_cache = True
            config.is_decoder = True

            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
1004
            output_generate = self._contrastive_generate(
1005
                model=model, input_ids=input_ids, attention_mask=attention_mask
1006
            )
1007
1008
1009
1010
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
1011
1012
1013

    def test_contrastive_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
1014
            if model_class._is_stateful:
amyeroberts's avatar
amyeroberts committed
1015
                self.skipTest(reason="Stateful models don't support contrastive search generation")
1016

1017
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
1018
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
amyeroberts's avatar
amyeroberts committed
1019
                self.skipTest(reason="Won't fix: old model with different cache format")
1020

1021
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1022
1023
1024

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
amyeroberts's avatar
amyeroberts committed
1025
                self.skipTest(reason="This model doesn't support caching")
1026
1027
1028
1029
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
1030
            output_generate = self._contrastive_generate(
1031
1032
1033
1034
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_scores=True,
1035
                output_logits=True,
1036
                output_hidden_states=True,
1037
                output_attentions=self.has_attentions,
1038
1039
1040
                return_dict_in_generate=True,
            )

1041
1042
1043
1044
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
1045
            self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
1046

1047
1048
1049
    def test_contrastive_generate_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
1050
            if model_class._is_stateful:
amyeroberts's avatar
amyeroberts committed
1051
                self.skipTest(reason="Stateful models don't support contrastive search generation")
1052

1053
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer", "speech2text"]):
amyeroberts's avatar
amyeroberts committed
1054
                self.skipTest(reason="Won't fix: old model with different cache format")
1055
            if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode"]):
amyeroberts's avatar
amyeroberts committed
1056
                self.skipTest(reason="TODO: fix me")
1057

1058
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1059
1060
1061

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
amyeroberts's avatar
amyeroberts committed
1062
                self.skipTest(reason="This model doesn't support caching")
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=True,
1075
                max_new_tokens=self.max_new_tokens,
1076
1077
1078
1079
1080
1081
1082
1083
                attention_mask=attention_mask,
            )

            high_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=False,
1084
                max_new_tokens=self.max_new_tokens,
1085
1086
1087
1088
                attention_mask=attention_mask,
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1089
1090
1091
    def test_beam_search_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
1092
            if model_class._is_stateful:
amyeroberts's avatar
amyeroberts committed
1093
                self.skipTest(reason="May fix in the future: need custom cache handling")
1094
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
amyeroberts's avatar
amyeroberts committed
1095
                self.skipTest(reason="Won't fix: old model with different cache format")
1096
1097
1098
1099
1100
1101
1102
1103
            if any(
                model_name in model_class.__name__.lower()
                for model_name in [
                    "ctrl",
                    "gptbigcode",
                    "transo_xl",
                    "xlnet",
                    "cpm",
tomeras91's avatar
tomeras91 committed
1104
                    "jamba",
1105
1106
                ]
            ):
amyeroberts's avatar
amyeroberts committed
1107
                self.skipTest(reason="May fix in the future: need model-specific fixes")
1108
            config, input_ids, _ = self._get_input_ids_and_config(batch_size=2)
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
            # batch_size=1 is ok, but batch_size>1 will cause non-identical output

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(input_ids, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=True)

            high_output = model.generate(
                input_ids, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=False
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1124
    @parameterized.expand([("random",), ("same",)])
1125
    @is_flaky()  # Read NOTE (1) below. If there are API issues, all attempts will fail.
1126
    def test_assisted_decoding_matches_greedy_search(self, assistant_type):
1127
        # This test ensures that the assisted generation does not introduce output changes over greedy search.
1128
1129
1130
1131
1132
        # NOTE (1): The sentence above is true most of the time, there is a tiny difference in the logits due to matmul
        # shape differences -- and it may result in a different output. The input shape difference happens in the
        # main model, that runs the forward pass with several candidates at once (as opposed to generating one token at
        # a time). See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 for more info.
        # NOTE (2): It breaks the pattern in the tests above, for multiple reasons:
1133
        # - assisted_decoding, contrarily to the other methods, can't be called on its own (e.g. needs to
1134
        # prepare the assistant encoder outputs in the main generate body);
1135
1136
        # - assisted_decoding does not support `use_cache = False`
        # - assisted_decoding does not support `batch_size > 1`
1137
1138

        for model_class in self.all_generative_model_classes:
1139
            if model_class._is_stateful:
amyeroberts's avatar
amyeroberts committed
1140
                self.skipTest(reason="Stateful models don't support assisted generation")
1141
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
amyeroberts's avatar
amyeroberts committed
1142
                self.skipTest(reason="Won't fix: old model with different cache format")
1143
1144
            if any(
                model_name in model_class.__name__.lower()
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1155
            ):
amyeroberts's avatar
amyeroberts committed
1156
                self.skipTest(reason="May fix in the future: need model-specific fixes")
1157

1158
            # enable cache
1159
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1160

1161
1162
            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
amyeroberts's avatar
amyeroberts committed
1163
                self.skipTest(reason="This model doesn't support caching")
1164

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
1180
                "output_logits": True,
1181
                "output_hidden_states": True,
1182
                "output_attentions": self.has_attentions,
1183
1184
1185
1186
                "return_dict_in_generate": True,
            }
            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

1187
1188
1189
1190
1191
1192
1193
            # test with the same assistant model or randomly init one
            # in the first case all candidate tokens are accepted, in the second none is accepted
            # case when some are accepted and some not is hard to reproduce, so let's hope this catches most errors :)
            if assistant_type == "random":
                assistant_model = model_class(config).to(torch_device).eval()
            else:
                assistant_model = model
1194
1195
1196
1197
1198
1199
1200
1201
1202
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs.update({"assistant_model": assistant_model})
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_assisted.sequences.tolist())
            for output in (output_greedy, output_assisted):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
1203

1204
1205
1206
1207
1208
1209
    @is_flaky()
    def test_prompt_lookup_decoding_matches_greedy_search(self):
        # This test ensures that the prompt lookup generation does not introduce output changes over greedy search.
        # This test is mostly a copy of test_assisted_decoding_matches_greedy_search

        for model_class in self.all_generative_model_classes:
1210
            if model_class._is_stateful:
amyeroberts's avatar
amyeroberts committed
1211
                self.skipTest(reason="Stateful models don't support assisted generation")
1212
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
amyeroberts's avatar
amyeroberts committed
1213
                self.skipTest(reason="Won't fix: old model with different cache format")
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
            if any(
                model_name in model_class.__name__.lower()
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
            ):
amyeroberts's avatar
amyeroberts committed
1227
                self.skipTest(reason="May fix in the future: need model-specific fixes")
1228
1229

            # enable cache
1230
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1231
1232
1233

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
amyeroberts's avatar
amyeroberts committed
1234
                self.skipTest(reason="This model doesn't support caching")
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the prompt lookup tries to give the model 2 tokens, to ensure the input preparation of
            #    prompt lookup is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
1251
                "output_logits": True,
1252
                "output_hidden_states": True,
1253
                "output_attentions": self.has_attentions,
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
                "return_dict_in_generate": True,
            }

            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            generation_kwargs.update({"prompt_lookup_num_tokens": 2})  # see b)
            output_prompt_lookup = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_prompt_lookup.sequences.tolist())
            for output in (output_greedy, output_prompt_lookup):
                self._check_outputs(output, input_ids, model.config, use_cache=True)

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
    def test_dola_decoding_sample(self):
        # TODO (joao): investigate skips, try to reduce incompatibilities
        for model_class in self.all_generative_model_classes:
            if model_class._is_stateful:
                self.skipTest(reason="Stateful models don't support DoLa decoding")

            if any(model_name in model_class.__name__.lower() for model_name in ["reformer"]):
                self.skipTest("Skip Reformer as the lm_head input size is 2 * hidden size, adopted from Rev Nets.")

            if any(model_name in model_class.__name__.lower() for model_name in ["marian", "mbart", "pegasus"]):
                self.skipTest("DoLa is not supported for models that don't return layerwise hidden states")

            # enable cache if the model is not openai-gpt, xlnet, cpm, or xlm
            config, input_ids, attention_mask = self._get_input_ids_and_config()

            # Some models don't support the cache and returning past_key_values
            if not hasattr(config, "use_cache"):
                config.use_cache = False
            else:
                config.use_cache = True

            # Encoder-decoder models are not supported
            if config.is_encoder_decoder:
                self.skipTest("DoLa is not supported for encoder-decoder models")
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()

            if model.get_output_embeddings() is None:
                self.skipTest("DoLa is not supported for models that don't have output embeddings")
            # Sets dola generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see b)
                "num_beams": 1,
                "do_sample": True,
                "output_scores": True,
                "output_logits": True,
                "output_hidden_states": True,
                "output_attentions": self.has_attentions,
                "return_dict_in_generate": True,
            }
            generation_kwargs.update({"dola_layers": "low"})
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
            output_dola = model.generate(input_ids, **model_kwargs, **generation_kwargs)
            self._check_outputs(output_dola, input_ids, model.config, use_cache=config.use_cache)

1316
    def test_assisted_decoding_sample(self):
1317
1318
1319
        # In this test we don't check assisted vs non-assisted output -- seeded assisted decoding with sample will not
        # match sample for the same seed, as the forward pass does not return the exact same logits (due to matmul with
        # different shapes, see https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535).
1320
        for model_class in self.all_generative_model_classes:
1321
            if model_class._is_stateful:
amyeroberts's avatar
amyeroberts committed
1322
                self.skipTest(reason="Stateful models don't support assisted generation")
1323
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
amyeroberts's avatar
amyeroberts committed
1324
                self.skipTest(reason="Won't fix: old model with different cache format")
1325
1326
            if any(
                model_name in model_class.__name__.lower()
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1337
            ):
amyeroberts's avatar
amyeroberts committed
1338
                self.skipTest(reason="May fix in the future: need model-specific fixes")
1339
1340

            # enable cache
1341
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1342
1343
1344

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
amyeroberts's avatar
amyeroberts committed
1345
                self.skipTest(reason="This model doesn't support caching")
1346
1347
1348
1349

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            assistant_model = model
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": True,
                "assistant_model": assistant_model,
                "output_scores": True,
1366
                "output_logits": True,
1367
                "output_hidden_states": True,
1368
                "output_attentions": self.has_attentions,
1369
1370
1371
                "return_dict_in_generate": True,
            }
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
1372
1373
1374

            self._check_outputs(output_assisted, input_ids, model.config, use_cache=True)

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
    def test_prompt_lookup_decoding_stops_at_eos(self):
        # This test ensures that the prompt lookup generation stops at eos token and does not suggest more tokens
        # (see https://github.com/huggingface/transformers/pull/31301)

        # The main idea is to have an ngram (unigram in our case) that is repeated twice in the input ids.
        # First time at the very end, so input ends with the unigrams, and second any arbitrary location.
        # Also, we need an EOS token which will be injected just after the arbitrary located ngram.
        # We verify that PLD will not copy and propose candidated that contain an EOS token, even if there are overlapping ngrams
        # in input ids. Otherwise a proposed EOS along with the trailing (ngrams-1) tokens might be accepted by the target model.
        # That seems as if the model "generated" and EOS but didn't stop from user's perspective

        input_ids = torch.randint(1, 50, (1, 10), device=torch_device)  # generate inputs in range from 1-50
        arbitrary_ngram = 51  # this is the arbitrary ngram, specifically chosen OOV to prevent flaky tests
        input_ids[:, 3] = arbitrary_ngram  # set pre-eos to arbitrary_ngram which is for sure not present in inputs
        input_ids[:, -1] = arbitrary_ngram  # put arbitrary_ngram in the end for the necessary match to happen

        eos_token_id = torch.tensor([0], device=torch_device)
        input_ids[:, 4] = eos_token_id  # inject eos-token-id in input ids so that it is located after arbitrary_ngram

        # init cand geenerator with max_matching_ngram_size=1 to match per-token
        candidate_generator = PromptLookupCandidateGenerator(
            eos_token_id=eos_token_id, num_output_tokens=4, max_matching_ngram_size=1
        )
        output_prompt_lookup = candidate_generator.get_candidates(input_ids)[0]

        # PLD shouldn't propose any new tokens based on eos-match
        self.assertTrue(output_prompt_lookup.shape[-1] == 10)

1403
1404
1405
1406
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
1407
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1408
1409
1410
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue
Joao Gante's avatar
Joao Gante committed
1411
            model = model_class(config).to(torch_device)
1412
1413

            head_masking = {
1414
1415
1416
1417
1418
1419
1420
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1421
1422
1423
1424
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1425
            if not set(head_masking.keys()) < {*signature.parameters.keys()}:
1426
1427
1428
1429
1430
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1431
                    attention_mask=attention_mask,
1432
                    num_beams=1,
1433
                    output_attentions=self.has_attentions,
1434
                    return_dict_in_generate=True,
1435
                    remove_invalid_values=True,
1436
1437
1438
1439
1440
1441
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1442
    def test_left_padding_compatibility(self):
1443
1444
        # NOTE: left-padding results in small numerical differences. This is expected.
        # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
1445

1446
1447
1448
1449
1450
        # First, filter out models that don't support left padding
        # - The model must have generative capabilities
        if len(self.all_generative_model_classes) == 0:
            self.skipTest(reason="No generative architecture available for this model.")

1451
1452
1453
1454
        # - The model must support padding
        if not self.has_attentions:
            self.skipTest(reason="This model doesn't support padding.")

1455
1456
        # - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
        decoder_only_classes = []
1457
        for model_class in self.all_generative_model_classes:
1458
            config, _, _ = self._get_input_ids_and_config()
1459
            if config.is_encoder_decoder:
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
                continue
            else:
                decoder_only_classes.append(model_class)
        if len(decoder_only_classes) == 0:
            self.skipTest(reason="No decoder-only architecture available for this model.")

        # - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
        #   added support for it yet. We skip these models for now.
        has_encoder_attributes = any(
            attr_name
            for attr_name in config.to_dict().keys()
            if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
        )
        if has_encoder_attributes:
            self.skipTest(
                reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
            )

        # Then, test left-padding
        def _prepare_model_kwargs(input_ids, attention_mask, signature):
            model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
            if "position_ids" in signature:
                position_ids = torch.cumsum(attention_mask, dim=-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                model_kwargs["position_ids"] = position_ids
            if "cache_position" in signature:
                cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
                model_kwargs["cache_position"] = cache_position
            return model_kwargs

        for model_class in decoder_only_classes:
1491
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1492
1493
1494
            model = model_class(config).to(torch_device).eval()
            signature = inspect.signature(model.forward).parameters.keys()

1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
            # Without padding
            model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
            next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]

            # With left-padding (length 32)
            pad_size = (input_ids.shape[0], 32)
            padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id
            padded_input_ids = torch.cat((padding, input_ids), dim=1)
            padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
            model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
            next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]

            # They should result in very similar logits
            self.assertTrue(torch.allclose(next_logits_wo_padding, next_logits_with_padding, atol=1e-5))
1509

1510
1511
1512
1513
1514
1515
1516
1517
    def test_past_key_values_format(self):
        # Test that the KV cache is formatted correctly. Exceptions need to explicitly overwrite this test. Having a
        # standard KV cache format is important for a consistent API (and for advanced generation methods).
        for model_class in self.all_generative_model_classes:
            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            # If it doesn't support cache, pass the test
            if not hasattr(config, "use_cache"):
amyeroberts's avatar
amyeroberts committed
1518
                self.skipTest(reason="This model doesn't support caching")
1519
1520
1521
1522
1523
1524
1525
1526

            model = model_class(config).to(torch_device)
            if "use_cache" not in inputs:
                inputs["use_cache"] = True
            outputs = model(**inputs)

            # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
            if "past_key_values" not in outputs:
amyeroberts's avatar
amyeroberts committed
1527
                self.skipTest(reason="This model doesn't return `past_key_values`")
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

            num_hidden_layers = (
                getattr(config, "decoder_layers", None)
                or getattr(config, "num_decoder_layers", None)
                or config.num_hidden_layers
            )
            num_attention_heads = getattr(config, "decoder_attention_heads", config.num_attention_heads)
            embed_dim = getattr(config, "d_model", config.hidden_size)
            per_head_embed_dim = embed_dim // num_attention_heads

            past_kv = outputs["past_key_values"]
            self.assertEqual(len(past_kv), num_hidden_layers)

            # Encoder-Decoder checks
            if config.is_encoder_decoder:
                encoder_num_attention_heads = config.encoder_attention_heads
                encoder_per_head_embed_dim = embed_dim // encoder_num_attention_heads
                batch_size, seq_length = inputs["decoder_input_ids"].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[i]), 4)  # K V for the decoder + K V for the encoder = 4
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    # The sequence length for the encoder K V depends on the model. Since it is not manipulated in
                    # autoregressive generation, I'm keeping the test general and not checking the 3rd dim
                    self.assertEqual(
                        (past_kv[i][2].shape[0], past_kv[i][2].shape[1], past_kv[i][2].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )
                    self.assertEqual(
                        (past_kv[i][3].shape[0], past_kv[i][3].shape[1], past_kv[i][3].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )

            # Decoder-only checks
            else:
                # TODO: this line is only needed because of imagegpt, where "pixel_values" = "input_ids". Fix the
                # tests in imagegpt such that `prepare_config_and_inputs_for_common` returns the later (and the other
                # tests use it)
                key = "input_ids" if "input_ids" in inputs else "pixel_values"
                batch_size, seq_length = inputs[key].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[0]), 2)  # K V for the decoder = 2
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )

1581
1582
1583
1584
    def test_generate_from_inputs_embeds_decoder_only(self):
        # When supported, tests that the decoder model can generate from `inputs_embeds` instead of `input_ids`
        # if fails, you should probably update the `prepare_inputs_for_generation` function
        for model_class in self.all_generative_model_classes:
1585
            config, input_ids, _ = self._get_input_ids_and_config()
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627

            # Ignore:
            # a) eos (to always output 20 tokens) and pad (so we don't try to infer the attn mask from the input_ids,
            #   which would cause a mismatch),
            config.pad_token_id = config.eos_token_id = -1
            # b) embedding scaling, the scaling factor applied after embeding from input_ids (requires knowledge of the
            #   variable that holds the scaling factor, which is model-dependent)
            if hasattr(config, "scale_embedding"):
                config.scale_embedding = False

            # This test is for decoder-only models (encoder-decoder models have native input embeddings support in the
            # decoder)
            if config.is_encoder_decoder:
                continue

            # Skip models without explicit support
            model = model_class(config).to(torch_device).eval()
            if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys():
                continue

            # Traditional way of generating text
            outputs_from_ids = model.generate(input_ids)
            self.assertEqual(outputs_from_ids.shape, (2, 20))

            # Same thing, but from input embeddings (`input_ids` is passed so the prompt is present in the output)
            inputs_embeds = model.get_input_embeddings()(input_ids)
            outputs_from_embeds = model.generate(input_ids, inputs_embeds=inputs_embeds)
            self.assertListEqual(outputs_from_ids.tolist(), outputs_from_embeds.tolist())

            # But if we pass different inputs_embeds, we should get different outputs
            torch.manual_seed(0)
            random_embeds = torch.rand_like(inputs_embeds)
            outputs_from_rand_embeds = model.generate(input_ids, inputs_embeds=random_embeds)
            with self.assertRaises(AssertionError):
                self.assertListEqual(outputs_from_rand_embeds.tolist(), outputs_from_embeds.tolist())

            # input_ids is not a required input -- if we don't pass it, the newly generated tokens will be the same
            outputs_from_embeds_wo_ids = model.generate(
                inputs_embeds=inputs_embeds, max_new_tokens=20 - inputs_embeds.shape[1]
            )
            self.assertListEqual(
                outputs_from_embeds[:, inputs_embeds.shape[1] :].tolist(),
1628
                outputs_from_embeds_wo_ids.tolist(),
1629
1630
            )

1631
1632
1633
1634
    def test_generate_continue_from_past_key_values(self):
        # Tests that we can continue generating from past key values, returned from a previous `generate` call
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["imagegpt"]):
amyeroberts's avatar
amyeroberts committed
1635
                self.skipTest(reason="Won't fix: old model with unique inputs/caches/other")
1636
            if any(model_name in model_class.__name__.lower() for model_name in ["umt5"]):
amyeroberts's avatar
amyeroberts committed
1637
                self.skipTest(reason="TODO: needs modeling or test input preparation fixes for compatibility")
1638
1639
1640
1641

            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            if not hasattr(config, "use_cache"):
amyeroberts's avatar
amyeroberts committed
1642
                self.skipTest(reason="This model doesn't support caching")
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660

            # Let's make it always:
            # 1. use cache (for obvious reasons)
            # 2. generate to max length (which can be achieved by setting the eos token to an invalid value), which
            #    would make the test flaky (e.g. EOS is generated on iteration 1 on both generations, but the
            #    continuation would force it to generate beyond an EOS token)
            # 3. ignore `token_type_ids` for simplicity
            # 4. ignore `forced_eos_token_id`, which requires further manipulation of the continuation inputs and is
            #    active by default on some models
            config.use_cache = True
            if "token_type_ids" in inputs:
                del inputs["token_type_ids"]

            model = model_class(config).to(torch_device)
            model.eval()
            model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1
            model.generation_config.forced_eos_token_id = None

1661
            # If "past_key_values" is not returned, skip the test (e.g. RWKV uses a different cache name and format)
1662
1663
            outputs = model(**inputs)
            if "past_key_values" not in outputs:
amyeroberts's avatar
amyeroberts committed
1664
                self.skipTest(reason="This model doesn't return `past_key_values`")
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706

            # Traditional way of generating text, with `return_dict_in_generate` to return the past key values
            outputs = model.generate(**inputs, do_sample=False, max_new_tokens=4, return_dict_in_generate=True)

            # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens). Note that the
            # inputs may need to be tweaked across `generate` calls (like the attention mask).
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=3, return_dict_in_generate=True)

            # Continue from the tokens generated above, preparing the inputs accordingly
            inputs["past_key_values"] = outputs_cached.past_key_values
            new_attention_len = outputs_cached.sequences.shape[-1]
            if config.is_encoder_decoder:
                inputs["decoder_input_ids"] = outputs_cached.sequences
                if "decoder_attention_mask" in inputs:
                    inputs["decoder_attention_mask"] = torch.nn.functional.pad(
                        inputs["decoder_attention_mask"],
                        (0, new_attention_len - inputs["decoder_attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            else:
                inputs["input_ids"] = outputs_cached.sequences
                if "attention_mask" in inputs:
                    inputs["attention_mask"] = torch.nn.functional.pad(
                        inputs["attention_mask"],
                        (0, new_attention_len - inputs["attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=1, return_dict_in_generate=True)

            # The two sets of generated text and past kv should be equal to each other
            self.assertListEqual(outputs.sequences.tolist(), outputs_cached.sequences.tolist())
            for layer_idx in range(len(outputs_cached.past_key_values)):
                for kv_idx in range(len(outputs_cached.past_key_values[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            outputs.past_key_values[layer_idx][kv_idx],
                            outputs_cached.past_key_values[layer_idx][kv_idx],
                        )
                    )

1707
1708
1709
1710
1711
1712
1713
    @parameterized.expand([(1, False), (1, True), (4, False)])
    def test_new_cache_format(self, num_beams, do_sample):
        # Tests that generating with the new format is exactly the same as the legacy one (for models that support it).
        # 馃憠 tests with and without beam search so that we can test with and without cache reordering.
        # 馃憠 tests with and without sampling so we can cover the most common use cases.
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_cache_class:
amyeroberts's avatar
amyeroberts committed
1714
                self.skipTest(reason="This model does not support the new cache format")
1715

1716
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
            config.use_cache = True

            model = model_class(config).to(torch_device).eval()
            generation_kwargs = {
                "max_new_tokens": 5,
                "do_sample": do_sample,
                "num_beams": num_beams,
                "num_return_sequences": num_beams,
                "return_dict_in_generate": True,  # Required to return `past_key_values`
            }

            # Sets seed before calling `generate` for the case with do_sample=True
            seed = torch.randint(0, 1000000, (1,)).item()
            set_seed(seed)
            legacy_results = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
            set_seed(seed)
1733
1734
1735
1736
1737
1738
            if config.is_encoder_decoder:
                cache_cls = EncoderDecoderCache
                past_key_values = cache_cls(DynamicCache(), DynamicCache())
            else:
                cache_cls = DynamicCache
                past_key_values = cache_cls()
1739
            new_results = model.generate(
1740
                input_ids, attention_mask=attention_mask, past_key_values=past_key_values, **generation_kwargs
1741
1742
1743
1744
1745
1746
            )

            # The two sets of generated sequences must match, despite the cache format between forward passes being
            # different
            self.assertListEqual(legacy_results.sequences.tolist(), new_results.sequences.tolist())
            self.assertTrue(isinstance(legacy_results.past_key_values, tuple))
1747
            self.assertTrue(isinstance(new_results.past_key_values, cache_cls))
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761

            # The contents of the two caches, when converted to the same format (in both directions!), must match
            legacy_cache = legacy_results.past_key_values
            new_cache_converted = new_results.past_key_values.to_legacy_cache()
            for layer_idx in range(len(legacy_cache)):
                for kv_idx in range(len(legacy_cache[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            legacy_cache[layer_idx][kv_idx],
                            new_cache_converted[layer_idx][kv_idx],
                        )
                    )

            new_cache = new_results.past_key_values
1762
            legacy_cache_converted = cache_cls.from_legacy_cache(legacy_results.past_key_values)
1763
1764
1765
1766
1767
1768
1769
1770
1771
            for layer_idx in range(len(new_cache)):
                for kv_idx in range(len(new_cache[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            new_cache[layer_idx][kv_idx],
                            legacy_cache_converted[layer_idx][kv_idx],
                        )
                    )

1772
1773
1774
1775
    @require_quanto
    def test_generate_with_quant_cache(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_quantized_cache:
amyeroberts's avatar
amyeroberts committed
1776
                self.skipTest(reason="This model does not support the quantized cache format")
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

            config, input_ids, attention_mask = self._get_input_ids_and_config()
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            generation_kwargs = {
                "max_new_tokens": 5,
                "cache_implementation": "quantized",
                # careful with group size, should be divisor of model's hidden size
                "cache_config": {"backend": "quanto", "nbits": 2, "q_group_size": 8, "residual_length": 128},
                "return_dict_in_generate": True,  # Required to return `past_key_values`
            }

            results = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
            self.assertTrue(isinstance(results.past_key_values, QuantoQuantizedCache))

            # passing past key values of different type should raise Error
            with self.assertRaises(ValueError):
                model.generate(
                    input_ids, attention_mask=attention_mask, past_key_valyes=DynamicCache(), **generation_kwargs
                )

            # setting incorrect cache_config args should raise an Error, i.e. nbits=60 does not make sense
            generation_kwargs["cache_config"] = {"nbits": 60, "q_group_size": 8, "residual_length": 128}
            with self.assertRaises(ValueError):
                model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

1805
1806
1807
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
1808

1809
1810
1811
1812
1813
1814
1815
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

1816
1817
1818
        # unprocessed logits
        self._check_logits(num_sequences_in_output, output.logits, config=config)

1819
        # Attentions
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
        if self.has_attentions:
            if config.is_encoder_decoder:
                # encoder
                self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
                # decoder
                self._check_attentions_for_generate(
                    num_sequences_in_output,
                    output.decoder_attentions,
                    min_length=1,
                    max_length=output.sequences.shape[-1],
                    config=config,
                    use_cache=use_cache,
                )
            else:
                # if use_cache first input is equal to no use_cache, so skip here
                attentions = output.attentions if not use_cache else output.attentions[1:]
                min_length = seq_length if not use_cache else seq_length + 1
                self._check_attentions_for_generate(
                    num_sequences_in_output,
                    attentions=attentions,
                    min_length=min_length,
                    max_length=output.sequences.shape[-1],
                    config=config,
                    use_cache=use_cache,
                )
1845
1846
1847
1848

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1849
1850
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

tomeras91's avatar
tomeras91 committed
1875
        # Past Key Value States -- a few notes here:
1876
1877
        # 1. Its inner sequence length is with respect to the inputs of the latest forward pass, hence the "-1"
        # 2. Some old models still return `output.past_key_values` even without `use_cache=True`
tomeras91's avatar
tomeras91 committed
1878
1879
        # 3. TODO (joao): A few models have different formats/types, skipping those until the cache refactor is
        # complete
1880
        models_without_standard_cache = ("ctrl", "fsmt", "gptbigcode", "mega", "reformer", "jamba", "mamba")
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
        has_standard_cache = not any(
            model_name in config.__class__.__name__.lower() for model_name in models_without_standard_cache
        )
        if use_cache and has_standard_cache:
            past_key_values = output.past_key_values
            past_sequence_length = output.sequences.shape[-1] - 1
            self._check_past_key_values_for_generate(
                num_sequences_in_output,
                past_key_values,
                seq_length=past_sequence_length,
                config=config,
            )

1894
1895
1896
1897
1898
1899
    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

1900
1901
1902
1903
1904
1905
1906
1907
    def _check_logits(self, batch_size, scores, config):
        self.assertIsInstance(scores, tuple)
        self.assertListEqual([iter_scores.shape[0] for iter_scores in scores], [batch_size] * len(scores))
        # vocabulary difference equal to one (imagegptmodel?) or zero (all other models)
        vocab_diff = config.vocab_size - scores[0].shape[-1]
        self.assertTrue(vocab_diff in [0, 1])
        self.assertListEqual([config.vocab_size - score.shape[-1] for score in scores], [vocab_diff] * len(scores))

1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

1932
1933
1934
1935
1936
1937
1938
1939
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
1958

1959
1960
1961
1962
1963
1964
1965
1966
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
    def _check_past_key_values_for_generate(self, batch_size, past_key_values, seq_length, config, num_beam_groups=1):
        self.assertIsInstance(past_key_values, tuple)
        self.assertListEqual(
            [isinstance(iter_past_key_values, tuple) for iter_past_key_values in past_key_values],
            [True] * len(past_key_values),
        )

        # (batch, head, seq_length, head_features)
        expected_shape = (
            batch_size * num_beam_groups,
            config.num_key_value_heads if hasattr(config, "num_key_value_heads") else config.num_attention_heads,
            seq_length,
            config.hidden_size // config.num_attention_heads,
        )
        # check shape key, value
        self.assertListEqual(
            [layer_past_key_values[0].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )
        self.assertListEqual(
            [layer_past_key_values[1].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )

1991
    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
1992
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
1993
1994
        # set to same device. we don't care what device.

1995
1996
1997
1998
1999
2000
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
2001
2002
2003
2004
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
2005
2006
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
2007
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
2008
            if subseq == shorter:
2009
2010
2011
2012
2013
                flag = True
                break

        self.assertTrue(flag)

2014
2015
2016

@require_torch
class UtilsFunctionsTest(unittest.TestCase):
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
    def test_speculative_sampling(self):
        # assume vocab size 10, input length 5 + 3 generated candidates
        candidate_input_ids = torch.tensor([[8, 0, 3, 9, 8, 1, 4, 5]])  # input tokens
        candidate_logits = torch.tensor(
            [
                [
                    [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # generated 1
                    [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # generated 4
                    [-10.0, -10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0],  # generated 5
                ]
            ]
        )
        candidate_length = 3
        inf = float("inf")
        new_logits = torch.tensor(
            [
                [
                    [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # accepts 1
                    [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # accepts 4
                    [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 10.0, -inf],  # rejects 5, accepts 8
                    [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # N/A
                ]
            ]
        )
        last_assistant_token_is_eos = False
        validated_tokens, n_matches = _speculative_sampling(
            candidate_input_ids,
            candidate_logits,
            candidate_length,
            new_logits,
            last_assistant_token_is_eos,
        )
        self.assertTrue(n_matches.item() == 2)
        self.assertTrue(validated_tokens.tolist()[0] == [1, 4, 8])

2052
2053

@require_torch
2054
2055
2056
2057
class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
    # setting framework_dependent_parameters needs to be gated, just like its contents' imports
    if is_torch_available():
        framework_dependent_parameters = {
2058
            "AutoModelForCausalLM": AutoModelForCausalLM,
2059
            "AutoModelForSpeechSeq2Seq": AutoModelForSpeechSeq2Seq,
2060
            "AutoModelForSeq2SeqLM": AutoModelForSeq2SeqLM,
2061
            "AutoModelForVision2Seq": AutoModelForVision2Seq,
2062
2063
            "LogitsProcessorList": LogitsProcessorList,
            "MinLengthLogitsProcessor": MinLengthLogitsProcessor,
2064
            "create_tensor_fn": torch.tensor,
2065
            "floats_tensor": floats_tensor,
2066
2067
2068
            "return_tensors": "pt",
        }

2069
2070
    @slow
    def test_diverse_beam_search(self):
2071
        # PT-only test: TF doesn't have a diverse beam search implementation
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
2082
2083
2084
2085
2086
2087
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
2088
2089
2090
2091
2092
2093
2094
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
Sylvain Gugger's avatar
Sylvain Gugger committed
2095
2096
2097
2098
2099
2100
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the"
                " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle"
                " name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the"
                " first child for both. The couple announced the pregnancy in January. The name Silas is the middle"
                " name of Timberlake's maternal grandfather. It's also his own middle name.",
2101
2102
            ],
        )
2103

2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
    def test_max_length_if_input_embeds(self):
        # PT-only test: TF doesn't have StoppingCriteria
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        max_length = 20
        input_len = input_ids.shape[-1]
        out_gen = model.generate(input_ids=input_ids, max_length=max_length)
        out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, max_length=max_length)
        self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])

2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
    def test_min_length_if_input_embeds(self):
        # PT-only test: TF doesn't have StoppingCriteria
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        min_length = 10
        input_len = input_ids.shape[-1]
        out_gen = model.generate(input_ids=input_ids, min_length=min_length)
        out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, min_length=min_length)
        self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])

2132
    def test_custom_stopping_criteria_overload_error(self):
2133
        # PT-only test: TF doesn't have StoppingCriteria
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(MaxLengthCriteria(max_length=42))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria)
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32)

    def test_custom_stopping_criteria(self):
2147
        # PT-only test: TF doesn't have StoppingCriteria
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        class DummyCriteria(StoppingCriteria):
            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids.shape[-1] >= 20

        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(DummyCriteria())

        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape),
            [1, 20],
        )
        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape),
            [1, 18],
        )

2169
    # TODO (joao): replace `stop_sequence` in the pipeline by the more recent `generate` functionality
2170
    def test_stop_sequence_stopping_criteria(self):
2171
        # PT-only test: TF doesn't have StoppingCriteria
2172
2173
2174
2175
2176
        prompt = """Hello I believe in"""
        generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart")
        output = generator(prompt)
        self.assertEqual(
            output,
2177
            [{"generated_text": ("Hello I believe in we we we we we we we we we")}],
2178
2179
        )

2180
2181
        output = generator(prompt, stop_sequence=" we")
        self.assertEqual(output, [{"generated_text": "Hello I believe in we"}])
2182

2183
    def test_generate_non_nlp_input_ids_as_kwarg(self):
2184
        # PT-only test: AFAIK there's no non-NLP model architecture in TF that supports `input_ids` as its only input
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
        model = ImageGPTForCausalImageModeling.from_pretrained(
            "hf-internal-testing/tiny-random-imagegpt", max_length=10
        ).to(torch_device)
        input_ids = ids_tensor((3, 5), vocab_size=10)

        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 10))

2196
    def test_generate_input_values_as_encoder_kwarg(self):
2197
        # PT-only test: AFAIK there's no generate-capable architecture in TF that supports `input_values` as its input
2198
2199
2200
2201
2202
2203
2204
2205
2206
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

2207
    def test_transition_scores_group_beam_search_encoder_decoder(self):
2208
        # PT-only test: TF doesn't have group beam search
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=2,
            num_beam_groups=2,
            num_return_sequences=2,
2220
            diversity_penalty=1.0,
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2231
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2232
2233
2234
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))
2235

2236
    def test_beam_search_low_memory(self):
2237
2238
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model_inputs = tokenizer("I", return_tensors="pt")["input_ids"]

        low_output = model.generate(model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=True)

        high_output = model.generate(
            model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=False
        )
        self.assertListEqual(low_output.tolist(), high_output.tolist())

2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
    @slow
    def test_watermark_generation(self):
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model_inputs = tokenizer("I will be", return_tensors="pt").to(torch_device)
        input_len = model_inputs["input_ids"].shape[-1]

        # generation should work with both input types: WatermarkingConfig or Dict, so let's check it here :)
        watermark_config = WatermarkingConfig(bias=2.5, seeding_scheme="selfhash")
        _ = model.generate(**model_inputs, watermarking_config=watermark_config, do_sample=False, max_length=15)

2261
2262
        # We will not check watermarked text, since we check it in `logits_processors` tests
        # Checking if generated ids are as expected fails on different hardware
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
        args = {
            "bias": 2.0,
            "context_width": 1,
            "seeding_scheme": "selfhash",
            "greenlist_ratio": 0.25,
            "hashing_key": 15485863,
        }
        output = model.generate(**model_inputs, do_sample=False, max_length=15)
        output_selfhash = model.generate(**model_inputs, watermarking_config=args, do_sample=False, max_length=15)

2273
        # Check that the detector is detecting watermarked text
2274
2275
2276
2277
2278
2279
2280
        detector = WatermarkDetector(model_config=model.config, device=torch_device, watermarking_config=args)
        detection_out_watermarked = detector(output_selfhash[:, input_len:], return_dict=True)
        detection_out = detector(output[:, input_len:], return_dict=True)

        self.assertListEqual(detection_out_watermarked.prediction.tolist(), [True])
        self.assertListEqual(detection_out.prediction.tolist(), [False])

2281
2282
    @slow
    def test_beam_search_example_integration(self):
2283
        # PT-only test: TF doesn't have a BeamSearchScorer
2284
2285
        # exactly the example provided in the docstrings of beam search, which previously
        # failed after directly copying from it. Refer to PR #15555
2286
2287
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2288
2289
2290
2291
2292
2293
2294

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 3 beams
        num_beams = 3
        # define decoder start token ids
2295
        input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long)
2296
2297
2298
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
2299
        model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)}
2300

2301
2302
        outputs = model.generate(
            input_ids, num_beams=num_beams, min_length=5, eos_token_id=model.config.eos_token_id, **model_kwargs
2303
2304
2305
2306
2307
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(outputs, ["Wie alt bist du?"])

2308
2309
    @slow
    def test_constrained_beam_search(self):
2310
        # PT-only test: TF doesn't have constrained beam search
2311
2312
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2313

2314
2315
        force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340

        constraints = [
            PhrasalConstraint(force_tokens),
            PhrasalConstraint(force_tokens_2),
        ]

        starting_text = ["The soldiers were not prepared and"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            max_length=30,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2341
2342
                "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if"
                " the enemy attacked them, big weapons scared"
2343
2344
2345
            ],
        )

2346
2347
    @slow
    def test_constrained_beam_search_mixed(self):
2348
        # PT-only test: TF doesn't have constrained beam search
2349
2350
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380

        force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        flexible_phrases = tokenizer(
            ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False
        ).input_ids

        constraints = [
            PhrasalConstraint(force_phrase),
            DisjunctiveConstraint(flexible_phrases),
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            # max_length=20,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2381
2382
2383
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2384
2385
2386
2387
2388
            ],
        )

    @slow
    def test_constrained_beam_search_mixed_mixin(self):
2389
        # PT-only test: TF doesn't have constrained beam search
2390
2391
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418

        force_word = "scared"
        force_flexible = ["scream", "screams", "screaming", "screamed"]

        force_words_ids = [
            tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids,
            tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids,
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2419
2420
2421
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2422
2423
2424
            ],
        )

2425
2426
    @slow
    def test_cfg_mixin(self):
2427
2428
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464

        input = tokenizer(["The dragon flew over Paris,"], return_tensors="pt", return_attention_mask=True)
        input["input_ids"] = input["input_ids"].to(torch_device)
        input["attention_mask"] = input["attention_mask"].to(torch_device)

        outputs = model.generate(**input, max_new_tokens=32, guidance_scale=1.5)
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "The dragon flew over Paris, landing in the Rue de la Bastille. The crowd was so excited "
                'that they had to leave the city.\n\n"We\'re going to Paris!"\n'
            ],
        )

        neg = tokenizer(["France,"], return_tensors="pt", return_attention_mask=True)
        neg["input_ids"] = neg["input_ids"].to(torch_device)
        neg["attention_mask"] = neg["attention_mask"].to(torch_device)
        outputs = model.generate(
            **input,
            max_new_tokens=32,
            guidance_scale=1.5,
            negative_prompt_ids=neg["input_ids"],
            negative_prompt_attention_mask=neg["attention_mask"],
        )
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                'The dragon flew over Paris, landing on the pavement.\n\n"Paris!"\n\n"Paris!"\n\n"'
                'Paris!"\n\n"Paris!"\n\n"Paris!"\n\n'
            ],
        )

2465
2466
    @slow
    def test_constrained_beam_search_example_translation_mixin(self):
2467
        # PT-only test: TF doesn't have constrained beam search
2468
2469
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487

        encoder_input_str = "translate English to German: How old are you?"
        force_words = ["sind"]

        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
        force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2488
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2489

2490
2491
    @slow
    def test_constrained_beam_search_example_integration(self):
2492
        # PT-only test: TF doesn't have constrained beam search
2493
2494
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2495
2496
2497
2498
2499
2500
2501

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 5 beams
        num_beams = 5
        # define decoder start token ids
2502
        input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long)
2503
2504
2505
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
2506
        model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)}
2507
2508
2509
2510

        constraint_str = "sind"
        constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # remove eos token

2511
2512
2513
2514
2515
2516
2517
        outputs = model.generate(
            input_ids,
            num_beams=num_beams,
            force_words_ids=[constraint_token_ids],
            min_length=5,
            eos_token_id=model.config.eos_token_id,
            **model_kwargs,
2518
2519
2520
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2521
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2522

2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
    @slow
    def test_per_row_stopping_criteria(self):
        text = [
            "They completed the challenging puzzle, revealing the hidden",
            "Today a dragon flew over France",
            "The aroma of freshly baked pizza filled the kitchen",
        ]
        stop_strings = ["secrets"]

        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        tokenizer.padding_side = "left"
        tokenizer.pad_token_id = tokenizer.eos_token_id
        input_ids = tokenizer(text, return_tensors="pt", padding="longest", add_special_tokens=False).input_ids.to(
            torch_device
        )

        # normal generation with one stopping criteria
        out = model.generate(input_ids, max_length=15)
        out_text = tokenizer.batch_decode(out)
        expected_out = [
            "They completed the challenging puzzle, revealing the hidden secrets of the world.\n",
            "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced",
            "The aroma of freshly baked pizza filled the kitchen with a sense of freshness",
        ]
        self.assertListEqual(out_text, expected_out)

        # generation should stop at "secrets" for first batch only, filling the rest with eos tokens
        out = model.generate(input_ids, max_length=15, stop_strings=stop_strings, tokenizer=tokenizer)
        out_text = tokenizer.batch_decode(out)
        expected_out = [
            "They completed the challenging puzzle, revealing the hidden secrets<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>",
            "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced",
            "The aroma of freshly baked pizza filled the kitchen with a sense of freshness",
        ]
        self.assertListEqual(out_text, expected_out)

2560
    def test_constrained_beam_search_mixin_type_checks(self):
2561
        # PT-only test: TF doesn't have constrained beam search
2562
2563
        tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random")
        model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random")
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599

        encoder_input_str = "translate English to German: How old are you?"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids]
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[-1]])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[[-1]]])
2600

2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
    def test_batched_decoder_start_id(self):
        # PT-only test: TF doesn't support batched_decoder_start_id
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        decoder_start_token_id = bart_model.generation_config.decoder_start_token_id
        decoder_start_token_id_batch = [decoder_start_token_id] * input_ids.shape[0]

        outputs = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id)

        outputs_batched_ids = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id_batch)

        self.assertListEqual(outputs.tolist(), outputs_batched_ids.tolist())

2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
    def test_decoder_start_id_from_config(self):
        # Refer to: (#30899)
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        decoder_start_token_id = bart_model.generation_config.decoder_start_token_id

        # we should be able to take `decoder_start_token_id` from model's generation config if user passes a `GenerationConfig` type
        outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))

        # If the generatoin config has no `decoder_start_token_id` or `bos_token_id`, we will raise an error unless user passes it in config
        bart_model.generation_config.decoder_start_token_id = None
        bart_model.generation_config.bos_token_id = None
        outputs_with_user_id = bart_model.generate(
            input_ids,
            generation_config=GenerationConfig(do_sample=False, decoder_start_token_id=decoder_start_token_id),
        )

        self.assertListEqual(outputs.tolist(), outputs_with_user_id.tolist())

        with self.assertRaises(ValueError):
            outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))

2650
    def test_contrastive_search_batched(self):
2651
        # PT-only test: TF doesn't have constrained beam search
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
        # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs)
        articles = ["Foo", "Bar Baz"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)

        model.config.eos_token_id = None
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)
        input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(
            input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )

        batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True)
        out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True)
        self.assertEqual(batched_out, out)

        # output_sequences_batched.scores[0][1] -> 1st set of logits, 2nd sequence
        max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max()
        self.assertTrue(max_score_diff < 1e-5)

2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
    def test_logits_processor_not_inplace(self):
        # PT-only test: TF fixes were not made
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        out = model.generate(input_ids, output_logits=True, output_scores=True, return_dict_in_generate=True)
        out_with_temp = model.generate(
            input_ids,
            temperature=0.5,
            do_sample=True,
            output_logits=True,
            output_scores=True,
            return_dict_in_generate=True,
        )

        # if no logits processor is used, scores == logits. Otherwise, the processor has to modify the scores
        self.assertListEqual(out.logits[-1].tolist(), out.scores[-1].tolist())
        self.assertNotEqual(out_with_temp.logits[-1].tolist(), out_with_temp.scores[-1].tolist())

2697
    def test_eos_token_id_int_and_list_top_k_top_sampling(self):
2698
        # Has TF equivalent: this test relies on random sampling
2699
2700
2701
2702
2703
2704
2705
        generation_kwargs = {
            "do_sample": True,
            "num_beams": 1,
            "top_p": 0.7,
            "top_k": 10,
            "temperature": 0.7,
        }
2706
        expectation = 20
2707

2708
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
2709
        text = """Hello, my dog is cute and"""
2710
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
2711
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
2712

2713
2714
2715
        # Only some seeds will work both on CPU/GPU for a fixed `expectation` value.
        # The selected seed is not guaranteed to work on all torch versions.
        torch.manual_seed(1)
2716
2717
2718
2719
        eos_token_id = 846
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

2720
        torch.manual_seed(1)
2721
        eos_token_id = [846, 198]
2722
2723
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))
2724

2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
    def test_model_kwarg_encoder_signature_filtering(self):
        # Has TF equivalent: ample use of framework-specific code
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        article = """Hugging Face is a technology company based in New York and Paris."""
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        output = bart_model.generate(input_ids).cpu().numpy()

        # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an
        # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of
        # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and
        # saves the day.
        class FakeBart(BartForConditionalGeneration):
            def forward(self, input_ids, foo=None, **kwargs):
                return super().forward(input_ids, **kwargs)

        bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)
        fake_output = bart_model.generate(input_ids, foo="bar").cpu().numpy()
        self.assertTrue(np.array_equal(output, fake_output))

        # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail
        # because it doesn't do signature filtering.
        class FakeEncoder(bart_model.model.encoder.__class__):
            def forward(self, input_ids, **kwargs):
                return super().forward(input_ids, **kwargs)

        fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared).to(torch_device)
        bart_model.model.encoder = fake_encoder

        # Normal generation still works (the output will be different because the encoder weights are different)
        fake_output = bart_model.generate(input_ids).cpu().numpy()
        with self.assertRaises(TypeError):
            # FakeEncoder.forward() accepts **kwargs -> no filtering -> type error due to unexpected input "foo"
            bart_model.generate(input_ids, foo="bar")
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781

    def test_default_max_length_warning(self):
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Default generation config value of 20 -> emits warning
        with self.assertWarns(UserWarning):
            model.generate(input_ids)

        # Explicitly setting max_length to 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(input_ids, max_length=20)
            self.assertEqual(len(warning_list), 0)

        # Generation config max_length != 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
2782
            # generation_config is modified -> legacy mode is disabled = generation_config takes precedence
2783
2784
2785
            model.generation_config.max_length = 10
            model.generate(input_ids)
            self.assertEqual(len(warning_list), 0)
2786

2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
    def test_length_warning_assisted_generation(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # This should not raise any warning that min length is not feasible in candidate generation
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(
                input_ids,
                assistant_model=assistant,
                min_new_tokens=10,
                max_length=20,
            )
            self.assertEqual(len(warning_list), 0)

    def test_generated_length_assisted_generation(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)
        input_length = input_ids.shape[-1]

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            min_new_tokens=10,
            max_new_tokens=20,
        )
        self.assertTrue((10 + input_length) <= out.shape[-1] <= (20 + input_length))

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            min_new_tokens=10,
        )
        self.assertTrue((input_length + 10) <= out.shape[-1] <= 20)

2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
    def test_model_kwarg_assisted_decoding_decoder_only(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with token_type_ids
        outputs_tti = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
        )
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_tti.tolist(), outputs_normal.tolist())

        # Assistant model
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant.config.pad_token_id = tokenizer.eos_token_id

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_tti.tolist())

    def test_model_kwarg_assisted_decoding_encoder_decoder(self):
2872
2873
2874
2875
2876
2877
2878
2879
        """
        Tests that the following scenario is compatible with assisted generation:
        1. encoder-decoder main model
        2. encoder-decoder assistant model
        3. both have a custom input
        (e.g. Whisper)
        """

2880
2881
2882
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg that distorts the output
        class FakeBart(BartForConditionalGeneration):
2883
2884
            def forward(self, input_ids, past_key_values, foo=False, **kwargs):
                outs = super().forward(input_ids, past_key_values=past_key_values, **kwargs)
2885
2886
2887
2888
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs

2889
2890
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
                inputs["foo"] = foo
                return inputs

        model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
2909
        outputs_foo = model.generate(input_ids, foo=True)
2910
2911
2912
2913
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
2914
2915
2916
        assistant = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
2917
2918
2919
2920
2921
2922
2923
2924

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = assistant.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
            assistant_encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2936
2937

    def test_assisted_decoding_encoder_decoder_shared_encoder(self):
2938
2939
2940
2941
2942
2943
2944
2945
        """
        Tests that the following scenario is compatible with assisted generation:
        1. encoder-decoder main model
        2. decoder-only assistant model
        3. both have a custom input
        (e.g. DistilWhisper)
        """

2946
2947
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg called foo that distorts the output
2948
        class FakeBartSeq2Seq(BartForConditionalGeneration):
2949
2950
2951
2952
2953
2954
2955
2956
2957
            def forward(self, input_ids, foo=False, **kwargs):
                outs = super().forward(input_ids, **kwargs)
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs

            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
2958
2959
2960
2961
2962
2963
2964
2965
2966
                inputs["foo"] = foo
                return inputs

        class FakeBartCausalLM(BartForCausalLM):
            def forward(self, input_ids, attention_mask, past_key_values, foo=False, **kwargs):
                outs = super().forward(input_ids, attention_mask, past_key_values=past_key_values, **kwargs)
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs
2967

2968
2969
2970
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
2971
2972
2973
                inputs["foo"] = foo
                return inputs

2974
        model = FakeBartSeq2Seq.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
        outputs_foo = model.generate(input_ids, foo=True)
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
2993
2994
2995
        assistant = FakeBartCausalLM.from_pretrained(
            "hf-internal-testing/tiny-random-BartForConditionalGeneration"
        ).to(torch_device)
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = model.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059

    def test_assisted_decoding_num_assistant_tokens_heuristic_schedule(self):
        # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly.

        prompt = "Alice and Bob"
        checkpoint = "EleutherAI/pythia-160m-deduped"
        tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        inputs = tokenizer(prompt, return_tensors="pt")

        model = AutoModelForCausalLM.from_pretrained(checkpoint)

        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 5
        assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic"
        generation_kwargs = {
            "eos_token_id": -1,
            "max_new_tokens": 5,
            "do_sample": False,
            "assistant_model": assistant_model,
        }
        model.generate(**inputs, **generation_kwargs)
        # update_candidate_strategy is called only once and therefore, assistant_model.generation_config.num_assistant_tokens should be either 4 or 7
        self.assertTrue(assistant_model.generation_config.num_assistant_tokens in (4, 7))

    def test_assisted_decoding_num_assistant_tokens_heuristic_transient_schedule(self):
        # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly.

        prompt = "Alice and Bob"
        checkpoint = "EleutherAI/pythia-160m-deduped"
        tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        inputs = tokenizer(prompt, return_tensors="pt")

        model = AutoModelForCausalLM.from_pretrained(checkpoint)

        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 5
        assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic_transient"
        generation_kwargs = {
            "eos_token_id": -1,
            "max_new_tokens": 5,
            "do_sample": False,
            "assistant_model": assistant_model,
        }
        model.generate(**inputs, **generation_kwargs)
        # update_candidate_strategy is called once but assistant_model.generation_config.num_assistant_tokens should stay 5
        self.assertEqual(assistant_model.generation_config.num_assistant_tokens, 5)
3060

3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
    @slow
    def test_validate_assistant(self):
        # Generate a random sample:
        inputs = np.random.rand(160000)

        # Load a main encoder-decoder model:
        model_id = "openai/whisper-large-v2"
        processor = AutoProcessor.from_pretrained(model_id)
        model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        )
        model.to(torch_device)

        # process the input:
        features = processor(inputs, return_tensors="pt").to(torch_device)

        # Load an encoder-decoder assistant with same encoder as the main model:
        assistant_distil_model_id = "distil-whisper/distil-large-v2"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum())

        # Load its decoder only version:
        assistant_causal_lm = AutoModelForCausalLM.from_pretrained(
            assistant_distil_model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_causal_lm).sum())

        # Load an encoder-decoder assistant with a different encoder than the main model:
        assistant_distil_model_id = "openai/whisper-tiny"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum())

        # Load its decoder only version:
        assistant_causal_lm = AutoModelForCausalLM.from_pretrained(
            assistant_distil_model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        ).to(torch_device)
        # It will raise an error as the encoder of the main and assistant model are not compatible:
        with self.assertRaises(ValueError):
            model.generate(**features, assistant_model=assistant_causal_lm)

        # Load an encoder-decoder model with a different tokenizer than the main model:
        assistant_distil_model_id = "hf-internal-testing/tiny-random-SeamlessM4Tv2ForSpeechToText"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
        ).to(torch_device)
        # This should raise an error as the main and assistant model don't use the same tokenizer:
        with self.assertRaises(ValueError):
            model.generate(**features, assistant_model=assistant_seq_to_seq)

3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
    def test_compare_unprocessed_logit_scores(self):
        # Get unprocessed logit scores back from model generate function.
        # Assert that unprocessed logits from generate() are same as those from modal eval()

        # tell model to generate text and return unprocessed/unwarped logit scores
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = "generate yes or no: "
        input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device)

        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        with torch.no_grad():
            # Get logits for the next token from fwd pass
            logits_fwd = model(input_ids).logits[:, -1, :][0]

        # Get logits for the next token from generate function
        outputs = model.generate(
            input_ids=input_ids,
            return_dict_in_generate=True,
            output_logits=True,
            max_new_tokens=1,
            do_sample=True,
        )
        logits_gen = outputs.logits[0][0]

        # assert that unprocessed logits from generate() are same as those from modal eval()
        self.assertListEqual(logits_fwd.tolist(), logits_gen.tolist())

    def test_return_unprocessed_logit_scores(self):
        # tell model to generate text and return unprocessed/unwarped logit scores
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = "generate yes or no: "
        input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device)
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        outputs = model.generate(
            input_ids=input_ids, return_dict_in_generate=True, output_logits=True, max_new_tokens=3
        )

        # perform dummy check if unpreprocessed logits make sense.
        # do preselection on high probabilities; find scores of y and n tokens
        probs_all = torch.nn.functional.softmax(outputs.logits[2][0], dim=-1)
        indices = torch.argwhere(probs_all > 0.001)
        indices = indices[:, -1]
        tokens_max = tokenizer.batch_decode(indices, skip_special_tokens=True)
        probs_max = probs_all[probs_all > 0.001]

        self.assertTrue(len(indices) >= 2)
        next_token_dict = {str(t): p for t, p in zip(tokens_max, probs_max)}
        self.assertTrue("n" in next_token_dict)
        self.assertTrue("y" in next_token_dict)
        y_prob = next_token_dict["y"]
        n_prob = next_token_dict["n"]

        self.assertTrue(y_prob > 0.001 and n_prob > 0.001)
        self.assertTrue(y_prob <= 1.0 and n_prob <= 1.0)
3178

jiqing-feng's avatar
jiqing-feng committed
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
    @slow
    @require_torch_multi_gpu
    def test_assisted_decoding_in_different_gpu(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to("cuda:0")
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to(
            "cuda:1"
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)
        input_length = input_ids.shape[-1]

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            max_new_tokens=20,
        )
        self.assertTrue(input_length <= out.shape[-1] <= input_length + 20)

    @slow
    @require_torch_gpu
    def test_assisted_decoding_in_gpu_cpu(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to("cuda")
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to(
            "cpu"
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)
        input_length = input_ids.shape[-1]

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            max_new_tokens=20,
        )
        self.assertTrue(input_length <= out.shape[-1] <= input_length + 20)

3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
    def test_special_tokens_fall_back_to_model_default(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to(
            torch_device
        )
        test_bos_id = 50

        # Sanity-check: the model has a BOS token set, and the first generated token is a BOS token
        gen_output = model.generate()
        self.assertTrue(model.generation_config.bos_token_id is not None)
        self.assertTrue(model.generation_config.bos_token_id == gen_output[0, 0])

        # If we pass a generation config **with** a BOS token, `generate` will use it
        generation_config = GenerationConfig(bos_token_id=test_bos_id)
        gen_output = model.generate(generation_config=generation_config)
        self.assertFalse(model.generation_config.bos_token_id == gen_output[0, 0])
        self.assertTrue(generation_config.bos_token_id == gen_output[0, 0])
        self.assertTrue(test_bos_id == gen_output[0, 0])

        # If we pass a generation config **without** a BOS token, `generate` will fetch the BOS token from
        # `model.generation_config`
        generation_config = GenerationConfig(bos_token_id=None)
        gen_output = model.generate(generation_config=generation_config)
        self.assertTrue(model.generation_config.bos_token_id == gen_output[0, 0])
        self.assertFalse(test_bos_id == gen_output[0, 0])
        self.assertTrue(generation_config.bos_token_id is None)

        # Changing `model.generation_config` will affect fallback behavior
        model.generation_config.bos_token_id = test_bos_id
        gen_output = model.generate(generation_config=generation_config)
        self.assertTrue(model.generation_config.bos_token_id == gen_output[0, 0])
        self.assertTrue(test_bos_id == gen_output[0, 0])
        self.assertTrue(generation_config.bos_token_id is None)

Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297

@require_torch
class TokenHealingTestCase(unittest.TestCase):
    @parameterized.expand(
        [
            (
                "square_bracket",
                'An example ["like this"] and another example [',
                'An example ["like this"] and another example ["',
            ),
            ("url", 'The link is <a href="http:', 'The link is <a href="http://'),
            # aggressive_healing: "http" shouldn't be replaced with "https"
            ("aggressive_healing", 'The link is <a href="http', 'The link is <a href="http'),
            ("trailing_whitespace", "I read a book about ", "I read a book about"),
            ("nothing_to_heal", "I read a book about", "I read a book about"),
            ("single_token", "I", "I"),
            ("empty_prompt", "", ""),
        ]
    )
    @require_auto_gptq
    def test_prompts(self, name, input, expected):
        model_name_or_path = "TheBloke/deepseek-llm-7B-base-GPTQ"
        tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
        completion_model = AutoModelForCausalLM.from_pretrained(
            model_name_or_path,
            device_map="auto",
            trust_remote_code=False,
            revision="main",
            use_cache=True,
        )
        input_ids = tokenizer(input, return_tensors="pt").input_ids.to(completion_model.device)

        healed_ids = completion_model.heal_tokens(input_ids)
        predicted = tokenizer.decode(healed_ids[0], skip_special_tokens=True)

        self.assertEqual(predicted, expected)

3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
    def test_generate_from_inputs_embeds_with_bos_token_id_is_none(self):
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        model.generate(inputs_embeds=inputs_embeds, max_length=20, bos_token_id=None)

        # bos_token_id is required when no input ids nor inputs_embeds is passed
        with self.assertRaises(ValueError):
            model.generate(max_length=20, bos_token_id=None)