Unverified Commit aee11fe4 authored by Raushan Turganbay's avatar Raushan Turganbay Committed by GitHub
Browse files

Fix max_length criteria when using inputs_embeds (#28994)



* fix max_length for inputs_embeds

* make style

* Update src/transformers/generation/utils.py
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>

* Static Cache: load models with MQA or GQA (#28975)

* fix

* fix tests

* fix tests

* Update src/transformers/generation/utils.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* more fixes

* make style

---------
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
parent 8876ce8a
...@@ -441,6 +441,9 @@ class GenerationMixin: ...@@ -441,6 +441,9 @@ class GenerationMixin:
if isinstance(value, torch.Tensor): if isinstance(value, torch.Tensor):
batch_size = value.shape[0] batch_size = value.shape[0]
break break
if "inputs_embeds" in model_kwargs:
return torch.ones((batch_size, 0), dtype=torch.long, device=self.device)
return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
def _prepare_attention_mask_for_generation( def _prepare_attention_mask_for_generation(
...@@ -1421,6 +1424,14 @@ class GenerationMixin: ...@@ -1421,6 +1424,14 @@ class GenerationMixin:
) )
generation_config.max_length = generation_config.max_new_tokens + input_ids_length generation_config.max_length = generation_config.max_new_tokens + input_ids_length
# otherwise the total length [inputs-embeds-len + new-tokens-len] will go beyond indicated `max_length``
elif (
model_input_name == "inputs_embeds"
and inputs_tensor.shape[:-1] != input_ids.shape
and not self.config.is_encoder_decoder
):
generation_config.max_length -= inputs_tensor.shape[1]
# if we don't pass `past_key_values` and a cache_implementation is specified # if we don't pass `past_key_values` and a cache_implementation is specified
if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING and not model_kwargs.get( if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING and not model_kwargs.get(
"past_key_values", False "past_key_values", False
......
...@@ -1963,7 +1963,7 @@ class GenerationTesterMixin: ...@@ -1963,7 +1963,7 @@ class GenerationTesterMixin:
) )
self.assertListEqual( self.assertListEqual(
outputs_from_embeds[:, inputs_embeds.shape[1] :].tolist(), outputs_from_embeds[:, inputs_embeds.shape[1] :].tolist(),
outputs_from_embeds_wo_ids[:, 1:].tolist(), outputs_from_embeds_wo_ids.tolist(),
) )
def test_generate_continue_from_past_key_values(self): def test_generate_continue_from_past_key_values(self):
...@@ -2730,6 +2730,20 @@ class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMi ...@@ -2730,6 +2730,20 @@ class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMi
**model_kwargs, **model_kwargs,
) )
def test_max_length_if_input_embeds(self):
# PT-only test: TF doesn't have StoppingCriteria
article = "Today a dragon flew over Paris."
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
inputs_embeds = model.get_input_embeddings()(input_ids)
max_length = 20
input_len = input_ids.shape[-1]
out_gen = model.generate(input_ids=input_ids, max_length=max_length)
out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, max_length=max_length)
self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])
def test_custom_stopping_criteria_overload_error(self): def test_custom_stopping_criteria_overload_error(self):
# PT-only test: TF doesn't have StoppingCriteria # PT-only test: TF doesn't have StoppingCriteria
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment