Unverified Commit b1065aa0 authored by Raushan Turganbay's avatar Raushan Turganbay Committed by GitHub
Browse files

Generation: get special tokens from model config (#30899)

* fix

* let's do this way?

* codestyle

* update

* add tests
parent 1d568dfa
...@@ -1361,6 +1361,23 @@ class GenerationMixin: ...@@ -1361,6 +1361,23 @@ class GenerationMixin:
self._cache.reset() self._cache.reset()
return self._cache return self._cache
def _get_decoder_start_token_id(
self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None
) -> int:
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.generation_config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
else:
return
def _prepare_special_tokens( def _prepare_special_tokens(
self, self,
generation_config: GenerationConfig, generation_config: GenerationConfig,
...@@ -1385,11 +1402,16 @@ class GenerationMixin: ...@@ -1385,11 +1402,16 @@ class GenerationMixin:
return token return token
return torch.tensor(token, device=device, dtype=torch.long) return torch.tensor(token, device=device, dtype=torch.long)
# for BC we also try to get `decoder_start_token_id` from model's generation config (#30892)
if self.config.is_encoder_decoder:
generation_config.decoder_start_token_id = self._get_decoder_start_token_id(
generation_config.decoder_start_token_id, generation_config.bos_token_id
)
bos_token_id = _tensor_or_none(generation_config.bos_token_id, device=device) bos_token_id = _tensor_or_none(generation_config.bos_token_id, device=device)
eos_token_id = _tensor_or_none(generation_config.eos_token_id, device=device) eos_token_id = _tensor_or_none(generation_config.eos_token_id, device=device)
pad_token_id = _tensor_or_none(generation_config.pad_token_id, device=device) pad_token_id = _tensor_or_none(generation_config.pad_token_id, device=device)
decoder_start_token_id = _tensor_or_none(generation_config.decoder_start_token_id, device=device) decoder_start_token_id = _tensor_or_none(generation_config.decoder_start_token_id, device=device)
decoder_start_token_id = decoder_start_token_id if decoder_start_token_id is not None else bos_token_id
# We can have more than one eos token. Always treat it as a 1D tensor (when it exists). # We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
if eos_token_id is not None and eos_token_id.ndim == 0: if eos_token_id is not None and eos_token_id.ndim == 0:
......
...@@ -65,6 +65,7 @@ if is_torch_available(): ...@@ -65,6 +65,7 @@ if is_torch_available():
GenerateBeamEncoderDecoderOutput, GenerateBeamEncoderDecoderOutput,
GenerateDecoderOnlyOutput, GenerateDecoderOnlyOutput,
GenerateEncoderDecoderOutput, GenerateEncoderDecoderOutput,
GenerationConfig,
GreedySearchDecoderOnlyOutput, GreedySearchDecoderOnlyOutput,
GreedySearchEncoderDecoderOutput, GreedySearchEncoderDecoderOutput,
LogitsProcessorList, LogitsProcessorList,
...@@ -2478,6 +2479,35 @@ class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMi ...@@ -2478,6 +2479,35 @@ class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMi
self.assertListEqual(outputs.tolist(), outputs_batched_ids.tolist()) self.assertListEqual(outputs.tolist(), outputs_batched_ids.tolist())
def test_decoder_start_id_from_config(self):
# Refer to: (#30899)
articles = [
"Justin Timberlake and Jessica Biel, welcome to parenthood.",
"Michael Phelps is arguably the most decorated Olympian of all time.",
]
bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
torch_device
)
input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
decoder_start_token_id = bart_model.generation_config.decoder_start_token_id
# we should be able to take `decoder_start_token_id` from model's generation config if user passes a `GenerationConfig` type
outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))
# If the generatoin config has no `decoder_start_token_id` or `bos_token_id`, we will raise an error unless user passes it in config
bart_model.generation_config.decoder_start_token_id = None
bart_model.generation_config.bos_token_id = None
outputs_with_user_id = bart_model.generate(
input_ids,
generation_config=GenerationConfig(do_sample=False, decoder_start_token_id=decoder_start_token_id),
)
self.assertListEqual(outputs.tolist(), outputs_with_user_id.tolist())
with self.assertRaises(ValueError):
outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))
def test_contrastive_search_batched(self): def test_contrastive_search_batched(self):
# PT-only test: TF doesn't have constrained beam search # PT-only test: TF doesn't have constrained beam search
# Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs) # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment