test_utils.py 137 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import copy
18
import inspect
19
import tempfile
20
import unittest
21
import warnings
22

23
import numpy as np
24
from parameterized import parameterized
25

26
from transformers import is_torch_available, pipeline, set_seed
27
from transformers.testing_utils import (
28
    is_flaky,
29
30
31
32
33
34
    require_accelerate,
    require_torch,
    require_torch_multi_accelerator,
    slow,
    torch_device,
)
35

36
from ..test_modeling_common import floats_tensor, ids_tensor
37
from .test_framework_agnostic import GenerationIntegrationTestsMixin
38

39
40
41
42

if is_torch_available():
    import torch

43
    from transformers import (
44
        AutoModelForCausalLM,
45
        AutoModelForSeq2SeqLM,
46
47
        AutoModelForSpeechSeq2Seq,
        AutoModelForVision2Seq,
48
        AutoProcessor,
49
        AutoTokenizer,
50
        BartForCausalLM,
51
52
53
54
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
55
        ImageGPTForCausalImageModeling,
56
        SpeechEncoderDecoderModel,
57
    )
58
    from transformers.cache_utils import DynamicCache
59
60
61
62
63
64
    from transformers.generation import (
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        DisjunctiveConstraint,
65
66
67
68
        GenerateBeamDecoderOnlyOutput,
        GenerateBeamEncoderDecoderOutput,
        GenerateDecoderOnlyOutput,
        GenerateEncoderDecoderOutput,
69
        GenerationConfig,
70
71
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
72
        LogitsProcessorList,
73
        MaxLengthCriteria,
74
        MinLengthLogitsProcessor,
75
76
77
78
79
        PhrasalConstraint,
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
        StoppingCriteria,
        StoppingCriteriaList,
80
81
        WatermarkDetector,
        WatermarkingConfig,
82
    )
83
    from transformers.generation.utils import _speculative_sampling
84
85
86
87
88


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
89
    input_name = "input_ids"
90
    max_new_tokens = 3
91

92
    def _get_input_ids_and_config(self, batch_size=2):
93
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Suraj Patil's avatar
Suraj Patil committed
94
        input_ids = inputs_dict[self.input_name]
95

96
        input_ids = input_ids[:batch_size]
97
98
99

        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
100
101
102
            if isinstance(config.eos_token_id, int):
                config.eos_token_id = [config.eos_token_id]
            config.pad_token_id = config.eos_token_id[0]
103
        attention_mask = torch.ones_like(input_ids, dtype=torch.long)
104

105
106
107
108
109
        # It is important set set the eos_token_id to None to ensure that no sequences
        # shorter than `max_length` can be generated
        config.eos_token_id = None
        config.forced_eos_token_id = None

110
        return config, input_ids, attention_mask
111
112

    @staticmethod
113
    def _get_logits_processor_and_warper_kwargs(
114
115
116
117
        input_length,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
    ):
118
119
120
        process_kwargs = {
            "bad_words_ids": [[1, 0]],
            "repetition_penalty": 1.2,
121
            "remove_invalid_values": True,
122
        }
123
124
125
126
        # NoRepeatNGramLogitsProcessor + forced tokens may result in no valid continuations
        if forced_bos_token_id is None and forced_eos_token_id is None:
            process_kwargs["no_repeat_ngram_size"] = 2

127
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
128
        return process_kwargs, warp_kwargs
129
130

    @staticmethod
131
    def _get_beam_kwargs(num_return_sequences=1):
132
133
134
135
136
137
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
138
        return beam_kwargs
139

140
    @staticmethod
141
    def _get_diverse_beam_kwargs(num_return_sequences=1):
142
143
144
145
146
147
148
149
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
150
        return beam_kwargs
151

152
    @staticmethod
153
    def _get_constrained_beam_kwargs(num_return_sequences=1):
154
155
156
157
158
159
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": num_return_sequences * 4,
            "num_return_sequences": num_return_sequences,
        }
160
        return beam_kwargs
161

162
    @staticmethod
163
164
165
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
166
        encoder = model.get_encoder()
167
168
169
170
171
172
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
173
174
175
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
176
177
178
        generation_config = copy.deepcopy(model.generation_config)
        model._prepare_special_tokens(generation_config)
        input_ids = torch.zeros_like(input_ids[:, :1]) + generation_config.decoder_start_token_id
179
180
181
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

182
183
184
185
186
187
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        output_scores=False,
188
        output_logits=False,
189
190
191
192
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
193
        logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
194
195
196
            input_ids.shape[-1],
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
197
198
        )

199
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
200
201
202
203
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
204
            max_new_tokens=self.max_new_tokens,
205
206
207
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
208
            output_logits=output_logits,
209
210
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
211
            **model_kwargs,
212
213
        )

214
        return output_generate
215
216
217
218
219
220
221
222
223
224

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        num_return_sequences,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
225
        output_logits=False,
226
227
228
229
230
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
231
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
232
233
234
235
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
236
            max_new_tokens=self.max_new_tokens,
237
238
            num_return_sequences=num_return_sequences,
            output_scores=output_scores,
239
            output_logits=output_logits,
240
241
242
243
244
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **logits_warper_kwargs,
            **process_kwargs,
245
            **model_kwargs,
246
247
        )

248
        return output_generate
249
250
251
252
253
254
255
256
257

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
258
        output_logits=False,
259
260
261
262
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
263
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
264
265
266
        output_generate = model.generate(
            input_ids,
            do_sample=False,
267
            max_new_tokens=self.max_new_tokens,
268
            output_scores=output_scores,
269
            output_logits=output_logits,
270
271
272
273
274
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
275
            **model_kwargs,
276
277
        )

278
        return output_generate
279
280
281
282
283
284
285
286
287

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_warper_kwargs,
        output_scores=False,
288
        output_logits=False,
289
290
291
292
293
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
294
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
295
296
297
        output_generate = model.generate(
            input_ids,
            do_sample=True,
298
            max_new_tokens=self.max_new_tokens,
299
            output_scores=output_scores,
300
            output_logits=output_logits,
301
302
303
304
305
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_warper_kwargs,
306
            **model_kwargs,
307
308
        )

309
        return output_generate
310
311
312
313
314
315
316
317
318

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
319
        output_logits=False,
320
321
322
323
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
324
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
325
326
327
        output_generate = model.generate(
            input_ids,
            do_sample=False,
328
            max_new_tokens=self.max_new_tokens,
329
            output_scores=output_scores,
330
            output_logits=output_logits,
331
332
333
334
335
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
336
            **model_kwargs,
337
338
        )

339
        return output_generate
340

341
342
343
344
345
346
347
348
349
    def _constrained_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        constraints,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
350
        output_logits=False,
351
352
353
354
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
355
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
356
357
358
        output_generate = model.generate(
            input_ids,
            do_sample=False,
359
            max_new_tokens=self.max_new_tokens,
360
            output_scores=output_scores,
361
            output_logits=output_logits,
362
363
364
365
366
367
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            constraints=constraints,
            **beam_kwargs,
            **logits_process_kwargs,
368
            **model_kwargs,
369
370
        )

371
        return output_generate
372

373
374
375
376
377
378
    def _contrastive_generate(
        self,
        model,
        input_ids,
        attention_mask,
        output_scores=False,
379
        output_logits=False,
380
381
382
383
384
385
386
387
388
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        contrastive_search_kwargs = {
            "penalty_alpha": 0.6,
            "top_k": 5,
        }

389
        logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
390
391
392
393
394
395
396
397
398
399
            input_ids.shape[-1],
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
        )

        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
400
            max_new_tokens=self.max_new_tokens,
401
402
403
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
404
            output_logits=output_logits,
405
406
407
408
409
410
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
            **model_kwargs,
            **contrastive_search_kwargs,
        )

411
        return output_generate
412

413
414
    def test_greedy_generate(self):
        for model_class in self.all_generative_model_classes:
415
            config, input_ids, attention_mask = self._get_input_ids_and_config()
416

417
            model = model_class(config).to(torch_device).eval()
418
            output_generate = self._greedy_generate(model=model, input_ids=input_ids, attention_mask=attention_mask)
419

420
421
422
423
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
424

425
426
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
427
            config, input_ids, attention_mask = self._get_input_ids_and_config()
428

429
430
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
431
            output_generate = self._greedy_generate(
432
433
434
435
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_scores=True,
436
                output_logits=True,
437
438
439
440
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
441
442

            if model.config.is_encoder_decoder:
443
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
444
445
                self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
                # Retrocompatibility check
446
447
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
448
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
449
450
                self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
                # Retrocompatibility check
451
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
452

453
            self._check_outputs(output_generate, input_ids, model.config)
454
455
456

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
457
            config, input_ids, attention_mask = self._get_input_ids_and_config()
458
459

            if not hasattr(config, "use_cache"):
460
                self.skipTest("This model doesn't support caching")
461
462

            config.use_cache = True
463
            config.is_decoder = True
464
            model = model_class(config).to(torch_device).eval()
465
            output_generate = self._greedy_generate(
466
467
                model=model,
                input_ids=input_ids,
468
                attention_mask=attention_mask,
469
                output_scores=True,
470
                output_logits=True,
471
472
473
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
474
            )
475

476
477
478
479
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
480
            self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
481
482
483

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
484
            config, input_ids, attention_mask = self._get_input_ids_and_config()
485

486
487
            model = model_class(config).to(torch_device).eval()
            process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
488
489
490
491
492
                input_ids.shape[-1],
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
            )

493
            output_generate = self._sample_generate(
494
495
496
497
498
499
500
501
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                num_return_sequences=1,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )

502
503
504
505
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
506

507
508
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
509
            config, input_ids, attention_mask = self._get_input_ids_and_config()
510

511
512
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
513

514
            process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
515
516
517
                input_ids.shape[-1],
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
518
            )
519

520
            output_generate = self._sample_generate(
521
522
                model=model,
                input_ids=input_ids,
523
                attention_mask=attention_mask,
524
525
526
527
                num_return_sequences=2,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
528
                output_logits=True,
529
530
531
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
532
533
534
            )

            if model.config.is_encoder_decoder:
535
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
536
537
                self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
                # Retrocompatibility check
538
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
539
            else:
540
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
541
542
                self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
                # Retrocompatibility check
543
544
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

545
            self._check_outputs(output_generate, input_ids, model.config, num_return_sequences=2)
546
547
548

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
549
            config, input_ids, attention_mask = self._get_input_ids_and_config()
550

551
            model = model_class(config).to(torch_device).eval()
552

553
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
554
555
556
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
557
            )
558
            beam_kwargs = self._get_beam_kwargs()
559

560
            output_generate = self._beam_search_generate(
561
562
                model=model,
                input_ids=input_ids,
563
                attention_mask=attention_mask,
564
565
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
566
            )
567

568
569
570
571
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
572
573
574

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
575
            config, input_ids, attention_mask = self._get_input_ids_and_config()
576
577

            # disable cache
578
            config.use_cache = False
579

580
            model = model_class(config).to(torch_device).eval()
581
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
582
583
584
585
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )
586
587
            beam_kwargs = self._get_beam_kwargs()
            output_generate = self._beam_search_generate(
588
589
                model=model,
                input_ids=input_ids,
590
                attention_mask=attention_mask,
591
592
593
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
594
                output_logits=True,
595
596
597
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
598
599
            )
            if model.config.is_encoder_decoder:
600
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
601
602
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
603
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
604
            else:
605
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
606
607
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
608
609
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

610
611
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
612
613
614
615
616
            )

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
617
            config, input_ids, attention_mask = self._get_input_ids_and_config()
618
619

            if not hasattr(config, "use_cache"):
620
                self.skipTest("This model doesn't support caching")
621
622

            model = model_class(config).to(torch_device).eval()
623
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
624
625
626
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
627
628
            )

629
            beam_kwargs = self._get_beam_kwargs()
630
631

            config.use_cache = True
632
            config.is_decoder = True
633
            model = model_class(config).to(torch_device).eval()
634
            output_generate = self._beam_search_generate(
635
636
637
638
639
640
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
641
                output_logits=True,
642
643
644
645
646
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

647
648
649
650
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
651
652
653
            self._check_outputs(
                output_generate, input_ids, model.config, use_cache=True, num_return_sequences=beam_kwargs["num_beams"]
            )
654

655
    @require_accelerate
656
    @require_torch_multi_accelerator
657
658
    def test_model_parallel_beam_search(self):
        for model_class in self.all_generative_model_classes:
659
660
661
            if "xpu" in torch_device:
                return unittest.skip("device_map='auto' does not work with XPU devices")

662
663
664
            if model_class._no_split_modules is None:
                continue

665
            config, input_ids, attention_mask = self._get_input_ids_and_config()
666
667
668
669
670
671
672
673
674

            model = model_class(config).eval()
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto")

                new_model.generate(
                    input_ids,
                    attention_mask=attention_mask,
675
                    max_new_tokens=self.max_new_tokens,
676
677
678
                    num_beams=2,
                )

679
680
    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
681
            config, input_ids, attention_mask = self._get_input_ids_and_config()
682

683
            _, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
684

685
            model = model_class(config).to(torch_device).eval()
686
            beam_kwargs = self._get_beam_kwargs()
687

688
            output_generate = self._beam_sample_generate(
689
690
                model=model,
                input_ids=input_ids,
691
                attention_mask=attention_mask,
692
693
                beam_kwargs=beam_kwargs,
                logits_warper_kwargs=logits_warper_kwargs,
694
            )
695

696
697
698
699
700
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])

701
702
703
704
705
706
707
708
709
710
711
712
            if "inputs_embeds" in set(inspect.signature(model.prepare_inputs_for_generation).parameters):
                input_embeds = model.get_input_embeddings()(input_ids)
                beam_kwargs.update({"inputs_embeds": input_embeds})
                output_generate2 = self._beam_sample_generate(
                    model=model,
                    input_ids=None,
                    attention_mask=attention_mask,
                    beam_kwargs=beam_kwargs,
                    logits_warper_kwargs=logits_warper_kwargs,
                )

                torch.testing.assert_close(output_generate[:, input_embeds.shape[1] :], output_generate2)
713
714
715

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
716
            config, input_ids, attention_mask = self._get_input_ids_and_config()
717
718

            # disable cache
719
            config.use_cache = False
720

721
            model = model_class(config).to(torch_device).eval()
722
723
            _, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
            beam_kwargs = self._get_beam_kwargs()
724

725
            output_generate = self._beam_sample_generate(
726
727
728
729
730
731
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
732
                output_logits=True,
733
734
735
736
737
738
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
739
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
740
741
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
742
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
743
            else:
744
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
745
746
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
747
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
748

749
750
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
751
            )
752

753
    def test_generate_without_input_ids(self):
754
        config, _, _ = self._get_input_ids_and_config()
755

756
757
758
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return
759

760
761
762
763
        # hack in case they are equal, otherwise the attn mask will be [0]
        if config.bos_token_id == config.pad_token_id:
            config.pad_token_id = None

764
765
766
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
767

768
769
770
            output_ids_generate = model.generate(
                do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True
            )
771
            self.assertIsNotNone(output_ids_generate)
772

773
774
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
775
            config, input_ids, attention_mask = self._get_input_ids_and_config()
776

777
            model = model_class(config).to(torch_device).eval()
778
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
779
780
781
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
782
783
784
            )

            # check `generate()` and `group_beam_search()` are equal
785
786
            beam_kwargs = self._get_diverse_beam_kwargs()
            output_generate = self._group_beam_search_generate(
787
788
                model=model,
                input_ids=input_ids,
789
                attention_mask=attention_mask,
790
791
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
792
            )
793
794
795
796
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
797

798
            # check `group_beam_search` for higher than 1 `num_return_sequences`
799
            num_return_sequences = 2
800
801
            beam_kwargs = self._get_diverse_beam_kwargs(num_return_sequences=num_return_sequences)
            output_generate = self._group_beam_search_generate(
802
803
804
805
806
807
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
808
809
810
811
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
812

813
814
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
815
            config, input_ids, attention_mask = self._get_input_ids_and_config()
816
            config.use_cache = False
817

818
            model = model_class(config).to(torch_device).eval()
819
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
820
821
822
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
823
824
            )

825
826
            beam_kwargs = self._get_diverse_beam_kwargs()
            output_generate = self._group_beam_search_generate(
827
828
                model=model,
                input_ids=input_ids,
829
                attention_mask=attention_mask,
830
831
832
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
833
                output_logits=True,
834
835
836
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
837
838
            )
            if model.config.is_encoder_decoder:
839
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
840
841
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
842
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
843
            else:
844
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
845
846
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
847
848
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

849
850
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
851
852
            )

853
854
    # TODO: @gante
    @is_flaky()
855
856
    def test_constrained_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
857
            config, input_ids, attention_mask = self._get_input_ids_and_config()
858
859
860

            model = model_class(config).to(torch_device).eval()

861
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
862
863
864
865
866
867
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )

            # Sample constraints
868
869
            min_id = 3
            max_id = config.vocab_size
870

871
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
872
873
874
875
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

876
877
            beam_kwargs = self._get_constrained_beam_kwargs()
            output_generate = self._constrained_beam_search_generate(
878
879
880
881
882
883
884
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
885
886
887
888
889
890

            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])

891
892
893
            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

894
            # check`constrained_beam_search` for higher than 1 `num_return_sequences`
895
            # Sample constraints
896
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
897
898
899
900
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

901
            beam_kwargs = self._get_constrained_beam_kwargs(num_return_sequences=2)
902

903
            output_generate = self._constrained_beam_search_generate(
904
905
906
907
908
909
910
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
911
912
913
914
915

            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
916
917
918
919
920
921

            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

    def test_constrained_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
922
            config, input_ids, attention_mask = self._get_input_ids_and_config()
923
924
925
926
927

            # disable cache
            config.use_cache = False

            model = model_class(config).to(torch_device).eval()
928
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
929
930
931
932
933
934
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )

            # Sample constraints
935
936
            min_id = 3
            max_id = model.config.vocab_size
937
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
938
939
940
941
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

942
943
            beam_kwargs = self._get_constrained_beam_kwargs()
            output_generate = self._constrained_beam_search_generate(
944
945
946
947
948
949
950
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
951
                output_logits=True,
952
953
954
955
956
957
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
958
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
959
960
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
961
962
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
            else:
963
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
964
965
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
966
967
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

968
969
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
970
971
            )

972
973
974
    def test_contrastive_generate(self):
        for model_class in self.all_generative_model_classes:
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
975
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
976
                self.skipTest("Won't fix: old model with different cache format")
977

978
            config, input_ids, attention_mask = self._get_input_ids_and_config()
979
980
981

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
982
                self.skipTest("This model doesn't support caching")
983
984
985
986
987
            config.use_cache = True
            config.is_decoder = True

            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
988
            output_generate = self._contrastive_generate(
989
                model=model, input_ids=input_ids, attention_mask=attention_mask
990
            )
991
992
993
994
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
995
996
997
998

    def test_contrastive_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
999
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1000
                self.skipTest("Won't fix: old model with different cache format")
1001

1002
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1003
1004
1005

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1006
                self.skipTest("This model doesn't support caching")
1007
1008
1009
1010
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
1011
            output_generate = self._contrastive_generate(
1012
1013
1014
1015
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_scores=True,
1016
                output_logits=True,
1017
1018
1019
1020
1021
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

1022
1023
1024
1025
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
1026
            self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
1027

1028
1029
1030
    def test_contrastive_generate_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
1031
1032
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer", "speech2text"]):
                self.skipTest("Won't fix: old model with different cache format")
tomeras91's avatar
tomeras91 committed
1033
            if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode", "jamba"]):
1034
                self.skipTest("TODO: fix me")
1035

1036
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1037
1038
1039

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1040
                self.skipTest("This model doesn't support caching")
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=True,
1053
                max_new_tokens=self.max_new_tokens,
1054
1055
1056
1057
1058
1059
1060
1061
                attention_mask=attention_mask,
            )

            high_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=False,
1062
                max_new_tokens=self.max_new_tokens,
1063
1064
1065
1066
                attention_mask=attention_mask,
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    def test_beam_search_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
                self.skipTest("Won't fix: old model with different cache format")
            if any(
                model_name in model_class.__name__.lower()
                for model_name in [
                    "bloom",
                    "ctrl",
                    "gptbigcode",
                    "transo_xl",
                    "xlnet",
                    "cpm",
tomeras91's avatar
tomeras91 committed
1081
                    "jamba",
1082
1083
1084
                ]
            ):
                self.skipTest("May fix in the future: need model-specific fixes")
1085
            config, input_ids, _ = self._get_input_ids_and_config(batch_size=2)
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
            # batch_size=1 is ok, but batch_size>1 will cause non-identical output

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(input_ids, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=True)

            high_output = model.generate(
                input_ids, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=False
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1101
    @parameterized.expand([("random",), ("same",)])
1102
    @is_flaky()  # Read NOTE (1) below. If there are API issues, all attempts will fail.
1103
    def test_assisted_decoding_matches_greedy_search(self, assistant_type):
1104
        # This test ensures that the assisted generation does not introduce output changes over greedy search.
1105
1106
1107
1108
1109
        # NOTE (1): The sentence above is true most of the time, there is a tiny difference in the logits due to matmul
        # shape differences -- and it may result in a different output. The input shape difference happens in the
        # main model, that runs the forward pass with several candidates at once (as opposed to generating one token at
        # a time). See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 for more info.
        # NOTE (2): It breaks the pattern in the tests above, for multiple reasons:
1110
        # - assisted_decoding, contrarily to the other methods, can't be called on its own (e.g. needs to
1111
        # prepare the assistant encoder outputs in the main generate body);
1112
1113
        # - assisted_decoding does not support `use_cache = False`
        # - assisted_decoding does not support `batch_size > 1`
1114
1115
1116

        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1117
                self.skipTest("Won't fix: old model with different cache format")
1118
1119
            if any(
                model_name in model_class.__name__.lower()
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1130
            ):
1131
                self.skipTest("May fix in the future: need model-specific fixes")
1132

1133
            # enable cache
1134
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1135

1136
1137
1138
            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                self.skipTest("This model doesn't support caching")
1139

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
1155
                "output_logits": True,
1156
1157
1158
1159
1160
1161
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }
            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

1162
1163
1164
1165
1166
1167
1168
            # test with the same assistant model or randomly init one
            # in the first case all candidate tokens are accepted, in the second none is accepted
            # case when some are accepted and some not is hard to reproduce, so let's hope this catches most errors :)
            if assistant_type == "random":
                assistant_model = model_class(config).to(torch_device).eval()
            else:
                assistant_model = model
1169
1170
1171
1172
1173
1174
1175
1176
1177
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs.update({"assistant_model": assistant_model})
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_assisted.sequences.tolist())
            for output in (output_greedy, output_assisted):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
1178

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    @is_flaky()
    def test_prompt_lookup_decoding_matches_greedy_search(self):
        # This test ensures that the prompt lookup generation does not introduce output changes over greedy search.
        # This test is mostly a copy of test_assisted_decoding_matches_greedy_search

        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
                self.skipTest("Won't fix: old model with different cache format")
            if any(
                model_name in model_class.__name__.lower()
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
            ):
                self.skipTest("May fix in the future: need model-specific fixes")

            # enable cache
1203
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                self.skipTest("This model doesn't support caching")

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the prompt lookup tries to give the model 2 tokens, to ensure the input preparation of
            #    prompt lookup is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
1224
                "output_logits": True,
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }

            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            generation_kwargs.update({"prompt_lookup_num_tokens": 2})  # see b)
            output_prompt_lookup = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_prompt_lookup.sequences.tolist())
            for output in (output_greedy, output_prompt_lookup):
                self._check_outputs(output, input_ids, model.config, use_cache=True)

1240
    def test_assisted_decoding_sample(self):
1241
1242
1243
        # In this test we don't check assisted vs non-assisted output -- seeded assisted decoding with sample will not
        # match sample for the same seed, as the forward pass does not return the exact same logits (due to matmul with
        # different shapes, see https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535).
1244
1245
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1246
                self.skipTest("Won't fix: old model with different cache format")
1247
1248
            if any(
                model_name in model_class.__name__.lower()
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1259
            ):
1260
                self.skipTest("May fix in the future: need model-specific fixes")
1261
1262

            # enable cache
1263
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1264
1265
1266

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1267
                self.skipTest("This model doesn't support caching")
1268
1269
1270
1271

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            assistant_model = model
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": True,
                "assistant_model": assistant_model,
                "output_scores": True,
1288
                "output_logits": True,
1289
1290
1291
1292
1293
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
1294
1295
1296

            self._check_outputs(output_assisted, input_ids, model.config, use_cache=True)

1297
1298
1299
1300
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
1301
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1302
1303
1304
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue
Joao Gante's avatar
Joao Gante committed
1305
            model = model_class(config).to(torch_device)
1306
1307

            head_masking = {
1308
1309
1310
1311
1312
1313
1314
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1315
1316
1317
1318
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1319
            if not set(head_masking.keys()) < {*signature.parameters.keys()}:
1320
1321
1322
1323
1324
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1325
                    attention_mask=attention_mask,
1326
1327
1328
                    num_beams=1,
                    output_attentions=True,
                    return_dict_in_generate=True,
1329
                    remove_invalid_values=True,
1330
1331
1332
1333
1334
1335
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1336
    def test_left_padding_compatibility(self):
1337
1338
        # NOTE: left-padding results in small numerical differences. This is expected.
        # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
1339

1340
1341
1342
1343
1344
1345
1346
        # First, filter out models that don't support left padding
        # - The model must have generative capabilities
        if len(self.all_generative_model_classes) == 0:
            self.skipTest(reason="No generative architecture available for this model.")

        # - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
        decoder_only_classes = []
1347
        for model_class in self.all_generative_model_classes:
1348
            config, _, _ = self._get_input_ids_and_config()
1349
            if config.is_encoder_decoder:
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
                continue
            else:
                decoder_only_classes.append(model_class)
        if len(decoder_only_classes) == 0:
            self.skipTest(reason="No decoder-only architecture available for this model.")

        # - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
        #   added support for it yet. We skip these models for now.
        has_encoder_attributes = any(
            attr_name
            for attr_name in config.to_dict().keys()
            if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
        )
        if has_encoder_attributes:
            self.skipTest(
                reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
            )

        # Then, test left-padding
        def _prepare_model_kwargs(input_ids, attention_mask, signature):
            model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
            if "position_ids" in signature:
                position_ids = torch.cumsum(attention_mask, dim=-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                model_kwargs["position_ids"] = position_ids
            if "cache_position" in signature:
                cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
                model_kwargs["cache_position"] = cache_position
            return model_kwargs

        for model_class in decoder_only_classes:
1381
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1382
1383
1384
            model = model_class(config).to(torch_device).eval()
            signature = inspect.signature(model.forward).parameters.keys()

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
            # Without padding
            model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
            next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]

            # With left-padding (length 32)
            pad_size = (input_ids.shape[0], 32)
            padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id
            padded_input_ids = torch.cat((padding, input_ids), dim=1)
            padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
            model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
            next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]

            # They should result in very similar logits
            self.assertTrue(torch.allclose(next_logits_wo_padding, next_logits_with_padding, atol=1e-5))
1399

1400
1401
1402
1403
1404
1405
1406
1407
    def test_past_key_values_format(self):
        # Test that the KV cache is formatted correctly. Exceptions need to explicitly overwrite this test. Having a
        # standard KV cache format is important for a consistent API (and for advanced generation methods).
        for model_class in self.all_generative_model_classes:
            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            # If it doesn't support cache, pass the test
            if not hasattr(config, "use_cache"):
1408
                self.skipTest("This model doesn't support caching")
1409
1410
1411
1412
1413
1414
1415
1416

            model = model_class(config).to(torch_device)
            if "use_cache" not in inputs:
                inputs["use_cache"] = True
            outputs = model(**inputs)

            # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
            if "past_key_values" not in outputs:
1417
                self.skipTest("This model doesn't return `past_key_values`")
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

            num_hidden_layers = (
                getattr(config, "decoder_layers", None)
                or getattr(config, "num_decoder_layers", None)
                or config.num_hidden_layers
            )
            num_attention_heads = getattr(config, "decoder_attention_heads", config.num_attention_heads)
            embed_dim = getattr(config, "d_model", config.hidden_size)
            per_head_embed_dim = embed_dim // num_attention_heads

            past_kv = outputs["past_key_values"]
            self.assertEqual(len(past_kv), num_hidden_layers)

            # Encoder-Decoder checks
            if config.is_encoder_decoder:
                encoder_num_attention_heads = config.encoder_attention_heads
                encoder_per_head_embed_dim = embed_dim // encoder_num_attention_heads
                batch_size, seq_length = inputs["decoder_input_ids"].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[i]), 4)  # K V for the decoder + K V for the encoder = 4
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    # The sequence length for the encoder K V depends on the model. Since it is not manipulated in
                    # autoregressive generation, I'm keeping the test general and not checking the 3rd dim
                    self.assertEqual(
                        (past_kv[i][2].shape[0], past_kv[i][2].shape[1], past_kv[i][2].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )
                    self.assertEqual(
                        (past_kv[i][3].shape[0], past_kv[i][3].shape[1], past_kv[i][3].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )

            # Decoder-only checks
            else:
                # TODO: this line is only needed because of imagegpt, where "pixel_values" = "input_ids". Fix the
                # tests in imagegpt such that `prepare_config_and_inputs_for_common` returns the later (and the other
                # tests use it)
                key = "input_ids" if "input_ids" in inputs else "pixel_values"
                batch_size, seq_length = inputs[key].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[0]), 2)  # K V for the decoder = 2
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )

1471
1472
1473
1474
    def test_generate_from_inputs_embeds_decoder_only(self):
        # When supported, tests that the decoder model can generate from `inputs_embeds` instead of `input_ids`
        # if fails, you should probably update the `prepare_inputs_for_generation` function
        for model_class in self.all_generative_model_classes:
1475
            config, input_ids, _ = self._get_input_ids_and_config()
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517

            # Ignore:
            # a) eos (to always output 20 tokens) and pad (so we don't try to infer the attn mask from the input_ids,
            #   which would cause a mismatch),
            config.pad_token_id = config.eos_token_id = -1
            # b) embedding scaling, the scaling factor applied after embeding from input_ids (requires knowledge of the
            #   variable that holds the scaling factor, which is model-dependent)
            if hasattr(config, "scale_embedding"):
                config.scale_embedding = False

            # This test is for decoder-only models (encoder-decoder models have native input embeddings support in the
            # decoder)
            if config.is_encoder_decoder:
                continue

            # Skip models without explicit support
            model = model_class(config).to(torch_device).eval()
            if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys():
                continue

            # Traditional way of generating text
            outputs_from_ids = model.generate(input_ids)
            self.assertEqual(outputs_from_ids.shape, (2, 20))

            # Same thing, but from input embeddings (`input_ids` is passed so the prompt is present in the output)
            inputs_embeds = model.get_input_embeddings()(input_ids)
            outputs_from_embeds = model.generate(input_ids, inputs_embeds=inputs_embeds)
            self.assertListEqual(outputs_from_ids.tolist(), outputs_from_embeds.tolist())

            # But if we pass different inputs_embeds, we should get different outputs
            torch.manual_seed(0)
            random_embeds = torch.rand_like(inputs_embeds)
            outputs_from_rand_embeds = model.generate(input_ids, inputs_embeds=random_embeds)
            with self.assertRaises(AssertionError):
                self.assertListEqual(outputs_from_rand_embeds.tolist(), outputs_from_embeds.tolist())

            # input_ids is not a required input -- if we don't pass it, the newly generated tokens will be the same
            outputs_from_embeds_wo_ids = model.generate(
                inputs_embeds=inputs_embeds, max_new_tokens=20 - inputs_embeds.shape[1]
            )
            self.assertListEqual(
                outputs_from_embeds[:, inputs_embeds.shape[1] :].tolist(),
1518
                outputs_from_embeds_wo_ids.tolist(),
1519
1520
            )

1521
1522
1523
1524
    def test_generate_continue_from_past_key_values(self):
        # Tests that we can continue generating from past key values, returned from a previous `generate` call
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["imagegpt"]):
1525
                self.skipTest("Won't fix: old model with unique inputs/caches/other")
1526
            if any(model_name in model_class.__name__.lower() for model_name in ["umt5"]):
1527
                self.skipTest("TODO: needs modeling or test input preparation fixes for compatibility")
1528
1529
1530
1531

            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            if not hasattr(config, "use_cache"):
1532
                self.skipTest("This model doesn't support caching")
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

            # Let's make it always:
            # 1. use cache (for obvious reasons)
            # 2. generate to max length (which can be achieved by setting the eos token to an invalid value), which
            #    would make the test flaky (e.g. EOS is generated on iteration 1 on both generations, but the
            #    continuation would force it to generate beyond an EOS token)
            # 3. ignore `token_type_ids` for simplicity
            # 4. ignore `forced_eos_token_id`, which requires further manipulation of the continuation inputs and is
            #    active by default on some models
            config.use_cache = True
            if "token_type_ids" in inputs:
                del inputs["token_type_ids"]

            model = model_class(config).to(torch_device)
            model.eval()
            model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1
            model.generation_config.forced_eos_token_id = None

1551
            # If "past_key_values" is not returned, skip the test (e.g. RWKV uses a different cache name and format)
1552
1553
            outputs = model(**inputs)
            if "past_key_values" not in outputs:
1554
                self.skipTest("This model doesn't return `past_key_values`")
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596

            # Traditional way of generating text, with `return_dict_in_generate` to return the past key values
            outputs = model.generate(**inputs, do_sample=False, max_new_tokens=4, return_dict_in_generate=True)

            # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens). Note that the
            # inputs may need to be tweaked across `generate` calls (like the attention mask).
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=3, return_dict_in_generate=True)

            # Continue from the tokens generated above, preparing the inputs accordingly
            inputs["past_key_values"] = outputs_cached.past_key_values
            new_attention_len = outputs_cached.sequences.shape[-1]
            if config.is_encoder_decoder:
                inputs["decoder_input_ids"] = outputs_cached.sequences
                if "decoder_attention_mask" in inputs:
                    inputs["decoder_attention_mask"] = torch.nn.functional.pad(
                        inputs["decoder_attention_mask"],
                        (0, new_attention_len - inputs["decoder_attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            else:
                inputs["input_ids"] = outputs_cached.sequences
                if "attention_mask" in inputs:
                    inputs["attention_mask"] = torch.nn.functional.pad(
                        inputs["attention_mask"],
                        (0, new_attention_len - inputs["attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=1, return_dict_in_generate=True)

            # The two sets of generated text and past kv should be equal to each other
            self.assertListEqual(outputs.sequences.tolist(), outputs_cached.sequences.tolist())
            for layer_idx in range(len(outputs_cached.past_key_values)):
                for kv_idx in range(len(outputs_cached.past_key_values[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            outputs.past_key_values[layer_idx][kv_idx],
                            outputs_cached.past_key_values[layer_idx][kv_idx],
                        )
                    )

1597
1598
1599
1600
1601
1602
1603
1604
1605
    @parameterized.expand([(1, False), (1, True), (4, False)])
    def test_new_cache_format(self, num_beams, do_sample):
        # Tests that generating with the new format is exactly the same as the legacy one (for models that support it).
        # 馃憠 tests with and without beam search so that we can test with and without cache reordering.
        # 馃憠 tests with and without sampling so we can cover the most common use cases.
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_cache_class:
                self.skipTest("This model does not support the new cache format")

1606
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            generation_kwargs = {
                "max_new_tokens": 5,
                "do_sample": do_sample,
                "num_beams": num_beams,
                "num_return_sequences": num_beams,
                "return_dict_in_generate": True,  # Required to return `past_key_values`
            }

            # Sets seed before calling `generate` for the case with do_sample=True
            seed = torch.randint(0, 1000000, (1,)).item()
            set_seed(seed)
            legacy_results = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
            set_seed(seed)
            new_results = model.generate(
                input_ids, attention_mask=attention_mask, past_key_values=DynamicCache(), **generation_kwargs
            )

            # The two sets of generated sequences must match, despite the cache format between forward passes being
            # different
            self.assertListEqual(legacy_results.sequences.tolist(), new_results.sequences.tolist())
            self.assertTrue(isinstance(legacy_results.past_key_values, tuple))
            self.assertTrue(isinstance(new_results.past_key_values, DynamicCache))

            # The contents of the two caches, when converted to the same format (in both directions!), must match
            legacy_cache = legacy_results.past_key_values
            new_cache_converted = new_results.past_key_values.to_legacy_cache()
            for layer_idx in range(len(legacy_cache)):
                for kv_idx in range(len(legacy_cache[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            legacy_cache[layer_idx][kv_idx],
                            new_cache_converted[layer_idx][kv_idx],
                        )
                    )

            new_cache = new_results.past_key_values
            legacy_cache_converted = DynamicCache.from_legacy_cache(legacy_results.past_key_values)
            for layer_idx in range(len(new_cache)):
                for kv_idx in range(len(new_cache[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            new_cache[layer_idx][kv_idx],
                            legacy_cache_converted[layer_idx][kv_idx],
                        )
                    )

1657
1658
1659
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
1660

1661
1662
1663
1664
1665
1666
1667
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

1668
1669
1670
        # unprocessed logits
        self._check_logits(num_sequences_in_output, output.logits, config=config)

1671
1672
1673
        # Attentions
        if config.is_encoder_decoder:
            # encoder
1674
            self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
            # decoder
            self._check_attentions_for_generate(
                num_sequences_in_output,
                output.decoder_attentions,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            attentions = output.attentions if not use_cache else output.attentions[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_attentions_for_generate(
                num_sequences_in_output,
                attentions=attentions,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1700
1701
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

tomeras91's avatar
tomeras91 committed
1726
        # Past Key Value States -- a few notes here:
1727
1728
        # 1. Its inner sequence length is with respect to the inputs of the latest forward pass, hence the "-1"
        # 2. Some old models still return `output.past_key_values` even without `use_cache=True`
tomeras91's avatar
tomeras91 committed
1729
1730
1731
        # 3. TODO (joao): A few models have different formats/types, skipping those until the cache refactor is
        # complete
        models_without_standard_cache = ("bloom", "ctrl", "fsmt", "gptbigcode", "mega", "reformer", "jamba")
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
        has_standard_cache = not any(
            model_name in config.__class__.__name__.lower() for model_name in models_without_standard_cache
        )
        if use_cache and has_standard_cache:
            past_key_values = output.past_key_values
            past_sequence_length = output.sequences.shape[-1] - 1
            self._check_past_key_values_for_generate(
                num_sequences_in_output,
                past_key_values,
                seq_length=past_sequence_length,
                config=config,
            )

1745
1746
1747
1748
1749
1750
    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

1751
1752
1753
1754
1755
1756
1757
1758
    def _check_logits(self, batch_size, scores, config):
        self.assertIsInstance(scores, tuple)
        self.assertListEqual([iter_scores.shape[0] for iter_scores in scores], [batch_size] * len(scores))
        # vocabulary difference equal to one (imagegptmodel?) or zero (all other models)
        vocab_diff = config.vocab_size - scores[0].shape[-1]
        self.assertTrue(vocab_diff in [0, 1])
        self.assertListEqual([config.vocab_size - score.shape[-1] for score in scores], [vocab_diff] * len(scores))

1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

1783
1784
1785
1786
1787
1788
1789
1790
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
1809

1810
1811
1812
1813
1814
1815
1816
1817
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
    def _check_past_key_values_for_generate(self, batch_size, past_key_values, seq_length, config, num_beam_groups=1):
        self.assertIsInstance(past_key_values, tuple)
        self.assertListEqual(
            [isinstance(iter_past_key_values, tuple) for iter_past_key_values in past_key_values],
            [True] * len(past_key_values),
        )

        # (batch, head, seq_length, head_features)
        expected_shape = (
            batch_size * num_beam_groups,
            config.num_key_value_heads if hasattr(config, "num_key_value_heads") else config.num_attention_heads,
            seq_length,
            config.hidden_size // config.num_attention_heads,
        )
        # check shape key, value
        self.assertListEqual(
            [layer_past_key_values[0].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )
        self.assertListEqual(
            [layer_past_key_values[1].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )

1842
    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
1843
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
1844
1845
        # set to same device. we don't care what device.

1846
1847
1848
1849
1850
1851
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
1852
1853
1854
1855
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
1856
1857
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
1858
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
1859
            if subseq == shorter:
1860
1861
1862
1863
1864
                flag = True
                break

        self.assertTrue(flag)

1865
1866
1867

@require_torch
class UtilsFunctionsTest(unittest.TestCase):
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
    def test_speculative_sampling(self):
        # assume vocab size 10, input length 5 + 3 generated candidates
        candidate_input_ids = torch.tensor([[8, 0, 3, 9, 8, 1, 4, 5]])  # input tokens
        candidate_logits = torch.tensor(
            [
                [
                    [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # generated 1
                    [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # generated 4
                    [-10.0, -10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0],  # generated 5
                ]
            ]
        )
        candidate_length = 3
        inf = float("inf")
        new_logits = torch.tensor(
            [
                [
                    [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # accepts 1
                    [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # accepts 4
                    [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 10.0, -inf],  # rejects 5, accepts 8
                    [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # N/A
                ]
            ]
        )
        last_assistant_token_is_eos = False
        validated_tokens, n_matches = _speculative_sampling(
            candidate_input_ids,
            candidate_logits,
            candidate_length,
            new_logits,
            last_assistant_token_is_eos,
        )
        self.assertTrue(n_matches.item() == 2)
        self.assertTrue(validated_tokens.tolist()[0] == [1, 4, 8])

1903
1904

@require_torch
1905
1906
1907
1908
class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
    # setting framework_dependent_parameters needs to be gated, just like its contents' imports
    if is_torch_available():
        framework_dependent_parameters = {
1909
            "AutoModelForCausalLM": AutoModelForCausalLM,
1910
            "AutoModelForSpeechSeq2Seq": AutoModelForSpeechSeq2Seq,
1911
            "AutoModelForSeq2SeqLM": AutoModelForSeq2SeqLM,
1912
            "AutoModelForVision2Seq": AutoModelForVision2Seq,
1913
1914
            "LogitsProcessorList": LogitsProcessorList,
            "MinLengthLogitsProcessor": MinLengthLogitsProcessor,
1915
            "create_tensor_fn": torch.tensor,
1916
            "floats_tensor": floats_tensor,
1917
1918
1919
            "return_tensors": "pt",
        }

1920
1921
    @slow
    def test_diverse_beam_search(self):
1922
        # PT-only test: TF doesn't have a diverse beam search implementation
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
1933
1934
1935
1936
1937
1938
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
1939
1940
1941
1942
1943
1944
1945
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
Sylvain Gugger's avatar
Sylvain Gugger committed
1946
1947
1948
1949
1950
1951
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the"
                " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle"
                " name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the"
                " first child for both. The couple announced the pregnancy in January. The name Silas is the middle"
                " name of Timberlake's maternal grandfather. It's also his own middle name.",
1952
1953
            ],
        )
1954

1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
    def test_max_length_if_input_embeds(self):
        # PT-only test: TF doesn't have StoppingCriteria
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        max_length = 20
        input_len = input_ids.shape[-1]
        out_gen = model.generate(input_ids=input_ids, max_length=max_length)
        out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, max_length=max_length)
        self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])

1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
    def test_min_length_if_input_embeds(self):
        # PT-only test: TF doesn't have StoppingCriteria
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        min_length = 10
        input_len = input_ids.shape[-1]
        out_gen = model.generate(input_ids=input_ids, min_length=min_length)
        out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, min_length=min_length)
        self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])

1983
    def test_custom_stopping_criteria_overload_error(self):
1984
        # PT-only test: TF doesn't have StoppingCriteria
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(MaxLengthCriteria(max_length=42))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria)
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32)

    def test_custom_stopping_criteria(self):
1998
        # PT-only test: TF doesn't have StoppingCriteria
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        class DummyCriteria(StoppingCriteria):
            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids.shape[-1] >= 20

        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(DummyCriteria())

        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape),
            [1, 20],
        )
        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape),
            [1, 18],
        )

2020
    def test_stop_sequence_stopping_criteria(self):
2021
        # PT-only test: TF doesn't have StoppingCriteria
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
        prompt = """Hello I believe in"""
        generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart")
        output = generator(prompt)
        self.assertEqual(
            output,
            [
                {
                    "generated_text": (
                        "Hello I believe in in in number number number number number number number number number"
                    )
                }
            ],
        )

        output = generator(prompt, stop_sequence=" number")
        self.assertEqual(output, [{"generated_text": "Hello I believe in in in number"}])

2039
    def test_generate_non_nlp_input_ids_as_kwarg(self):
2040
        # PT-only test: AFAIK there's no non-NLP model architecture in TF that supports `input_ids` as its only input
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
        model = ImageGPTForCausalImageModeling.from_pretrained(
            "hf-internal-testing/tiny-random-imagegpt", max_length=10
        ).to(torch_device)
        input_ids = ids_tensor((3, 5), vocab_size=10)

        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 10))

2052
    def test_generate_input_values_as_encoder_kwarg(self):
2053
        # PT-only test: AFAIK there's no generate-capable architecture in TF that supports `input_values` as its input
2054
2055
2056
2057
2058
2059
2060
2061
2062
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

2063
    def test_transition_scores_group_beam_search_encoder_decoder(self):
2064
        # PT-only test: TF doesn't have group beam search
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=2,
            num_beam_groups=2,
            num_return_sequences=2,
2076
            diversity_penalty=1.0,
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2087
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2088
2089
2090
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))
2091

2092
    def test_beam_search_low_memory(self):
2093
2094
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model_inputs = tokenizer("I", return_tensors="pt")["input_ids"]

        low_output = model.generate(model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=True)

        high_output = model.generate(
            model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=False
        )
        self.assertListEqual(low_output.tolist(), high_output.tolist())

2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
    @slow
    def test_watermark_generation(self):
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model_inputs = tokenizer("I will be", return_tensors="pt").to(torch_device)
        input_len = model_inputs["input_ids"].shape[-1]

        # generation should work with both input types: WatermarkingConfig or Dict, so let's check it here :)
        watermark_config = WatermarkingConfig(bias=2.5, seeding_scheme="selfhash")
        _ = model.generate(**model_inputs, watermarking_config=watermark_config, do_sample=False, max_length=15)

        args = {
            "bias": 2.0,
            "context_width": 1,
            "seeding_scheme": "selfhash",
            "greenlist_ratio": 0.25,
            "hashing_key": 15485863,
        }
        output = model.generate(**model_inputs, do_sample=False, max_length=15)
        output_selfhash = model.generate(**model_inputs, watermarking_config=args, do_sample=False, max_length=15)

        # check that the watermarked text is generating what is should
        self.assertListEqual(
            output.tolist(), [[40, 481, 307, 262, 717, 284, 9159, 326, 314, 716, 407, 257, 4336, 286, 262]]
        )
        self.assertListEqual(
            output_selfhash.tolist(), [[40, 481, 307, 2263, 616, 640, 284, 651, 616, 1621, 503, 612, 553, 531, 367]]
        )

        detector = WatermarkDetector(model_config=model.config, device=torch_device, watermarking_config=args)
        detection_out_watermarked = detector(output_selfhash[:, input_len:], return_dict=True)
        detection_out = detector(output[:, input_len:], return_dict=True)

        # check that the detector is detecting watermarked text
        self.assertListEqual(detection_out_watermarked.prediction.tolist(), [True])
        self.assertListEqual(detection_out.prediction.tolist(), [False])

2143
2144
    @slow
    def test_beam_search_example_integration(self):
2145
        # PT-only test: TF doesn't have a BeamSearchScorer
2146
2147
        # exactly the example provided in the docstrings of beam search, which previously
        # failed after directly copying from it. Refer to PR #15555
2148
2149
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2150
2151
2152
2153
2154
2155
2156

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 3 beams
        num_beams = 3
        # define decoder start token ids
2157
        input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long)
2158
2159
2160
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
2161
        model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)}
2162

2163
2164
        outputs = model.generate(
            input_ids, num_beams=num_beams, min_length=5, eos_token_id=model.config.eos_token_id, **model_kwargs
2165
2166
2167
2168
2169
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(outputs, ["Wie alt bist du?"])

2170
2171
    @slow
    def test_constrained_beam_search(self):
2172
        # PT-only test: TF doesn't have constrained beam search
2173
2174
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2175

2176
2177
        force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202

        constraints = [
            PhrasalConstraint(force_tokens),
            PhrasalConstraint(force_tokens_2),
        ]

        starting_text = ["The soldiers were not prepared and"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            max_length=30,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2203
2204
                "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if"
                " the enemy attacked them, big weapons scared"
2205
2206
2207
            ],
        )

2208
2209
    @slow
    def test_constrained_beam_search_mixed(self):
2210
        # PT-only test: TF doesn't have constrained beam search
2211
2212
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242

        force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        flexible_phrases = tokenizer(
            ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False
        ).input_ids

        constraints = [
            PhrasalConstraint(force_phrase),
            DisjunctiveConstraint(flexible_phrases),
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            # max_length=20,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2243
2244
2245
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2246
2247
2248
2249
2250
            ],
        )

    @slow
    def test_constrained_beam_search_mixed_mixin(self):
2251
        # PT-only test: TF doesn't have constrained beam search
2252
2253
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280

        force_word = "scared"
        force_flexible = ["scream", "screams", "screaming", "screamed"]

        force_words_ids = [
            tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids,
            tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids,
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2281
2282
2283
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2284
2285
2286
            ],
        )

2287
2288
    @slow
    def test_cfg_mixin(self):
2289
2290
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326

        input = tokenizer(["The dragon flew over Paris,"], return_tensors="pt", return_attention_mask=True)
        input["input_ids"] = input["input_ids"].to(torch_device)
        input["attention_mask"] = input["attention_mask"].to(torch_device)

        outputs = model.generate(**input, max_new_tokens=32, guidance_scale=1.5)
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "The dragon flew over Paris, landing in the Rue de la Bastille. The crowd was so excited "
                'that they had to leave the city.\n\n"We\'re going to Paris!"\n'
            ],
        )

        neg = tokenizer(["France,"], return_tensors="pt", return_attention_mask=True)
        neg["input_ids"] = neg["input_ids"].to(torch_device)
        neg["attention_mask"] = neg["attention_mask"].to(torch_device)
        outputs = model.generate(
            **input,
            max_new_tokens=32,
            guidance_scale=1.5,
            negative_prompt_ids=neg["input_ids"],
            negative_prompt_attention_mask=neg["attention_mask"],
        )
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                'The dragon flew over Paris, landing on the pavement.\n\n"Paris!"\n\n"Paris!"\n\n"'
                'Paris!"\n\n"Paris!"\n\n"Paris!"\n\n'
            ],
        )

2327
2328
    @slow
    def test_constrained_beam_search_example_translation_mixin(self):
2329
        # PT-only test: TF doesn't have constrained beam search
2330
2331
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349

        encoder_input_str = "translate English to German: How old are you?"
        force_words = ["sind"]

        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
        force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2350
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2351

2352
2353
    @slow
    def test_constrained_beam_search_example_integration(self):
2354
        # PT-only test: TF doesn't have constrained beam search
2355
2356
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2357
2358
2359
2360
2361
2362
2363

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 5 beams
        num_beams = 5
        # define decoder start token ids
2364
        input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long)
2365
2366
2367
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
2368
        model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)}
2369
2370
2371
2372

        constraint_str = "sind"
        constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # remove eos token

2373
2374
2375
2376
2377
2378
2379
        outputs = model.generate(
            input_ids,
            num_beams=num_beams,
            force_words_ids=[constraint_token_ids],
            min_length=5,
            eos_token_id=model.config.eos_token_id,
            **model_kwargs,
2380
2381
2382
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2383
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2384

2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
    @slow
    def test_per_row_stopping_criteria(self):
        text = [
            "They completed the challenging puzzle, revealing the hidden",
            "Today a dragon flew over France",
            "The aroma of freshly baked pizza filled the kitchen",
        ]
        stop_strings = ["secrets"]

        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        tokenizer.padding_side = "left"
        tokenizer.pad_token_id = tokenizer.eos_token_id
        input_ids = tokenizer(text, return_tensors="pt", padding="longest", add_special_tokens=False).input_ids.to(
            torch_device
        )

        # normal generation with one stopping criteria
        out = model.generate(input_ids, max_length=15)
        out_text = tokenizer.batch_decode(out)
        expected_out = [
            "They completed the challenging puzzle, revealing the hidden secrets of the world.\n",
            "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced",
            "The aroma of freshly baked pizza filled the kitchen with a sense of freshness",
        ]
        self.assertListEqual(out_text, expected_out)

        # generation should stop at "secrets" for first batch only, filling the rest with eos tokens
        out = model.generate(input_ids, max_length=15, stop_strings=stop_strings, tokenizer=tokenizer)
        out_text = tokenizer.batch_decode(out)
        expected_out = [
            "They completed the challenging puzzle, revealing the hidden secrets<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>",
            "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced",
            "The aroma of freshly baked pizza filled the kitchen with a sense of freshness",
        ]
        self.assertListEqual(out_text, expected_out)

2422
    def test_constrained_beam_search_mixin_type_checks(self):
2423
        # PT-only test: TF doesn't have constrained beam search
2424
2425
        tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random")
        model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random")
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461

        encoder_input_str = "translate English to German: How old are you?"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids]
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[-1]])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[[-1]]])
2462

2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
    def test_batched_decoder_start_id(self):
        # PT-only test: TF doesn't support batched_decoder_start_id
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        decoder_start_token_id = bart_model.generation_config.decoder_start_token_id
        decoder_start_token_id_batch = [decoder_start_token_id] * input_ids.shape[0]

        outputs = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id)

        outputs_batched_ids = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id_batch)

        self.assertListEqual(outputs.tolist(), outputs_batched_ids.tolist())

2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
    def test_decoder_start_id_from_config(self):
        # Refer to: (#30899)
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        decoder_start_token_id = bart_model.generation_config.decoder_start_token_id

        # we should be able to take `decoder_start_token_id` from model's generation config if user passes a `GenerationConfig` type
        outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))

        # If the generatoin config has no `decoder_start_token_id` or `bos_token_id`, we will raise an error unless user passes it in config
        bart_model.generation_config.decoder_start_token_id = None
        bart_model.generation_config.bos_token_id = None
        outputs_with_user_id = bart_model.generate(
            input_ids,
            generation_config=GenerationConfig(do_sample=False, decoder_start_token_id=decoder_start_token_id),
        )

        self.assertListEqual(outputs.tolist(), outputs_with_user_id.tolist())

        with self.assertRaises(ValueError):
            outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))

2512
    def test_contrastive_search_batched(self):
2513
        # PT-only test: TF doesn't have constrained beam search
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
        # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs)
        articles = ["Foo", "Bar Baz"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)

        model.config.eos_token_id = None
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)
        input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(
            input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )

        batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True)
        out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True)
        self.assertEqual(batched_out, out)

        # output_sequences_batched.scores[0][1] -> 1st set of logits, 2nd sequence
        max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max()
        self.assertTrue(max_score_diff < 1e-5)

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
    def test_logits_processor_not_inplace(self):
        # PT-only test: TF fixes were not made
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        out = model.generate(input_ids, output_logits=True, output_scores=True, return_dict_in_generate=True)
        out_with_temp = model.generate(
            input_ids,
            temperature=0.5,
            do_sample=True,
            output_logits=True,
            output_scores=True,
            return_dict_in_generate=True,
        )

        # if no logits processor is used, scores == logits. Otherwise, the processor has to modify the scores
        self.assertListEqual(out.logits[-1].tolist(), out.scores[-1].tolist())
        self.assertNotEqual(out_with_temp.logits[-1].tolist(), out_with_temp.scores[-1].tolist())

2559
    def test_eos_token_id_int_and_list_top_k_top_sampling(self):
2560
        # Has TF equivalent: this test relies on random sampling
2561
2562
2563
2564
2565
2566
2567
        generation_kwargs = {
            "do_sample": True,
            "num_beams": 1,
            "top_p": 0.7,
            "top_k": 10,
            "temperature": 0.7,
        }
2568
        expectation = 20
2569

2570
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
2571
        text = """Hello, my dog is cute and"""
2572
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
2573
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
2574

2575
2576
2577
        # Only some seeds will work both on CPU/GPU for a fixed `expectation` value.
        # The selected seed is not guaranteed to work on all torch versions.
        torch.manual_seed(1)
2578
2579
2580
2581
        eos_token_id = 846
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

2582
        torch.manual_seed(1)
2583
        eos_token_id = [846, 198]
2584
2585
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))
2586

2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
    def test_model_kwarg_encoder_signature_filtering(self):
        # Has TF equivalent: ample use of framework-specific code
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        article = """Hugging Face is a technology company based in New York and Paris."""
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        output = bart_model.generate(input_ids).cpu().numpy()

        # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an
        # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of
        # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and
        # saves the day.
        class FakeBart(BartForConditionalGeneration):
            def forward(self, input_ids, foo=None, **kwargs):
                return super().forward(input_ids, **kwargs)

        bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)
        fake_output = bart_model.generate(input_ids, foo="bar").cpu().numpy()
        self.assertTrue(np.array_equal(output, fake_output))

        # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail
        # because it doesn't do signature filtering.
        class FakeEncoder(bart_model.model.encoder.__class__):
            def forward(self, input_ids, **kwargs):
                return super().forward(input_ids, **kwargs)

        fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared).to(torch_device)
        bart_model.model.encoder = fake_encoder

        # Normal generation still works (the output will be different because the encoder weights are different)
        fake_output = bart_model.generate(input_ids).cpu().numpy()
        with self.assertRaises(TypeError):
            # FakeEncoder.forward() accepts **kwargs -> no filtering -> type error due to unexpected input "foo"
            bart_model.generate(input_ids, foo="bar")
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643

    def test_default_max_length_warning(self):
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Default generation config value of 20 -> emits warning
        with self.assertWarns(UserWarning):
            model.generate(input_ids)

        # Explicitly setting max_length to 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(input_ids, max_length=20)
            self.assertEqual(len(warning_list), 0)

        # Generation config max_length != 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
2644
            # generation_config is modified -> legacy mode is disabled = generation_config takes precedence
2645
2646
2647
            model.generation_config.max_length = 10
            model.generate(input_ids)
            self.assertEqual(len(warning_list), 0)
2648

2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
    def test_length_warning_assisted_generation(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # This should not raise any warning that min length is not feasible in candidate generation
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(
                input_ids,
                assistant_model=assistant,
                min_new_tokens=10,
                max_length=20,
            )
            self.assertEqual(len(warning_list), 0)

    def test_generated_length_assisted_generation(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)
        input_length = input_ids.shape[-1]

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            min_new_tokens=10,
            max_new_tokens=20,
        )
        self.assertTrue((10 + input_length) <= out.shape[-1] <= (20 + input_length))

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            min_new_tokens=10,
        )
        self.assertTrue((input_length + 10) <= out.shape[-1] <= 20)

2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
    def test_model_kwarg_assisted_decoding_decoder_only(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with token_type_ids
        outputs_tti = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
        )
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_tti.tolist(), outputs_normal.tolist())

        # Assistant model
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant.config.pad_token_id = tokenizer.eos_token_id

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_tti.tolist())

    def test_model_kwarg_assisted_decoding_encoder_decoder(self):
2734
2735
2736
2737
2738
2739
2740
2741
        """
        Tests that the following scenario is compatible with assisted generation:
        1. encoder-decoder main model
        2. encoder-decoder assistant model
        3. both have a custom input
        (e.g. Whisper)
        """

2742
2743
2744
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg that distorts the output
        class FakeBart(BartForConditionalGeneration):
2745
2746
            def forward(self, input_ids, past_key_values, foo=False, **kwargs):
                outs = super().forward(input_ids, past_key_values=past_key_values, **kwargs)
2747
2748
2749
2750
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs

2751
2752
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
                inputs["foo"] = foo
                return inputs

        model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
2771
        outputs_foo = model.generate(input_ids, foo=True)
2772
2773
2774
2775
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
2776
2777
2778
        assistant = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
2779
2780
2781
2782
2783
2784
2785
2786

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = assistant.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
            assistant_encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2798
2799

    def test_assisted_decoding_encoder_decoder_shared_encoder(self):
2800
2801
2802
2803
2804
2805
2806
2807
        """
        Tests that the following scenario is compatible with assisted generation:
        1. encoder-decoder main model
        2. decoder-only assistant model
        3. both have a custom input
        (e.g. DistilWhisper)
        """

2808
2809
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg called foo that distorts the output
2810
        class FakeBartSeq2Seq(BartForConditionalGeneration):
2811
2812
2813
2814
2815
2816
2817
2818
2819
            def forward(self, input_ids, foo=False, **kwargs):
                outs = super().forward(input_ids, **kwargs)
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs

            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
2820
2821
2822
2823
2824
2825
2826
2827
2828
                inputs["foo"] = foo
                return inputs

        class FakeBartCausalLM(BartForCausalLM):
            def forward(self, input_ids, attention_mask, past_key_values, foo=False, **kwargs):
                outs = super().forward(input_ids, attention_mask, past_key_values=past_key_values, **kwargs)
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs
2829

2830
2831
2832
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
2833
2834
2835
                inputs["foo"] = foo
                return inputs

2836
        model = FakeBartSeq2Seq.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
        outputs_foo = model.generate(input_ids, foo=True)
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
2855
2856
2857
        assistant = FakeBartCausalLM.from_pretrained(
            "hf-internal-testing/tiny-random-BartForConditionalGeneration"
        ).to(torch_device)
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = model.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921

    def test_assisted_decoding_num_assistant_tokens_heuristic_schedule(self):
        # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly.

        prompt = "Alice and Bob"
        checkpoint = "EleutherAI/pythia-160m-deduped"
        tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        inputs = tokenizer(prompt, return_tensors="pt")

        model = AutoModelForCausalLM.from_pretrained(checkpoint)

        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 5
        assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic"
        generation_kwargs = {
            "eos_token_id": -1,
            "max_new_tokens": 5,
            "do_sample": False,
            "assistant_model": assistant_model,
        }
        model.generate(**inputs, **generation_kwargs)
        # update_candidate_strategy is called only once and therefore, assistant_model.generation_config.num_assistant_tokens should be either 4 or 7
        self.assertTrue(assistant_model.generation_config.num_assistant_tokens in (4, 7))

    def test_assisted_decoding_num_assistant_tokens_heuristic_transient_schedule(self):
        # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly.

        prompt = "Alice and Bob"
        checkpoint = "EleutherAI/pythia-160m-deduped"
        tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        inputs = tokenizer(prompt, return_tensors="pt")

        model = AutoModelForCausalLM.from_pretrained(checkpoint)

        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 5
        assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic_transient"
        generation_kwargs = {
            "eos_token_id": -1,
            "max_new_tokens": 5,
            "do_sample": False,
            "assistant_model": assistant_model,
        }
        model.generate(**inputs, **generation_kwargs)
        # update_candidate_strategy is called once but assistant_model.generation_config.num_assistant_tokens should stay 5
        self.assertEqual(assistant_model.generation_config.num_assistant_tokens, 5)
2922

2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
    @slow
    def test_validate_assistant(self):
        # Generate a random sample:
        inputs = np.random.rand(160000)

        # Load a main encoder-decoder model:
        model_id = "openai/whisper-large-v2"
        processor = AutoProcessor.from_pretrained(model_id)
        model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        )
        model.to(torch_device)

        # process the input:
        features = processor(inputs, return_tensors="pt").to(torch_device)

        # Load an encoder-decoder assistant with same encoder as the main model:
        assistant_distil_model_id = "distil-whisper/distil-large-v2"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum())

        # Load its decoder only version:
        assistant_causal_lm = AutoModelForCausalLM.from_pretrained(
            assistant_distil_model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_causal_lm).sum())

        # Load an encoder-decoder assistant with a different encoder than the main model:
        assistant_distil_model_id = "openai/whisper-tiny"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum())

        # Load its decoder only version:
        assistant_causal_lm = AutoModelForCausalLM.from_pretrained(
            assistant_distil_model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        ).to(torch_device)
        # It will raise an error as the encoder of the main and assistant model are not compatible:
        with self.assertRaises(ValueError):
            model.generate(**features, assistant_model=assistant_causal_lm)

        # Load an encoder-decoder model with a different tokenizer than the main model:
        assistant_distil_model_id = "hf-internal-testing/tiny-random-SeamlessM4Tv2ForSpeechToText"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
        ).to(torch_device)
        # This should raise an error as the main and assistant model don't use the same tokenizer:
        with self.assertRaises(ValueError):
            model.generate(**features, assistant_model=assistant_seq_to_seq)

2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
    def test_compare_unprocessed_logit_scores(self):
        # Get unprocessed logit scores back from model generate function.
        # Assert that unprocessed logits from generate() are same as those from modal eval()

        # tell model to generate text and return unprocessed/unwarped logit scores
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = "generate yes or no: "
        input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device)

        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        with torch.no_grad():
            # Get logits for the next token from fwd pass
            logits_fwd = model(input_ids).logits[:, -1, :][0]

        # Get logits for the next token from generate function
        outputs = model.generate(
            input_ids=input_ids,
            return_dict_in_generate=True,
            output_logits=True,
            max_new_tokens=1,
            do_sample=True,
        )
        logits_gen = outputs.logits[0][0]

        # assert that unprocessed logits from generate() are same as those from modal eval()
        self.assertListEqual(logits_fwd.tolist(), logits_gen.tolist())

    def test_return_unprocessed_logit_scores(self):
        # tell model to generate text and return unprocessed/unwarped logit scores
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = "generate yes or no: "
        input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device)
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        outputs = model.generate(
            input_ids=input_ids, return_dict_in_generate=True, output_logits=True, max_new_tokens=3
        )

        # perform dummy check if unpreprocessed logits make sense.
        # do preselection on high probabilities; find scores of y and n tokens
        probs_all = torch.nn.functional.softmax(outputs.logits[2][0], dim=-1)
        indices = torch.argwhere(probs_all > 0.001)
        indices = indices[:, -1]
        tokens_max = tokenizer.batch_decode(indices, skip_special_tokens=True)
        probs_max = probs_all[probs_all > 0.001]

        self.assertTrue(len(indices) >= 2)
        next_token_dict = {str(t): p for t, p in zip(tokens_max, probs_max)}
        self.assertTrue("n" in next_token_dict)
        self.assertTrue("y" in next_token_dict)
        y_prob = next_token_dict["y"]
        n_prob = next_token_dict["n"]

        self.assertTrue(y_prob > 0.001 and n_prob > 0.001)
        self.assertTrue(y_prob <= 1.0 and n_prob <= 1.0)
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052

    def test_generate_from_inputs_embeds_with_bos_token_id_is_none(self):
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        model.generate(inputs_embeds=inputs_embeds, max_length=20, bos_token_id=None)

        # bos_token_id is required when no input ids nor inputs_embeds is passed
        with self.assertRaises(ValueError):
            model.generate(max_length=20, bos_token_id=None)