Unverified Commit 623346ab authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

Template for framework-agnostic tests (#21348)

parent 5451f889
"""
Framework agnostic tests for generate()-related methods.
"""
import numpy as np
from transformers import AutoTokenizer
class GenerationIntegrationTestsMixin:
# To be populated by the child classes
framework_dependent_parameters = {
"AutoModelForSeq2SeqLM": None,
"create_tensor_fn": None,
"return_tensors": None,
}
def test_validate_generation_inputs(self):
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"]
return_tensors = self.framework_dependent_parameters["return_tensors"]
create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"]
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-t5")
encoder_input_str = "Hello world"
input_ids = tokenizer(encoder_input_str, return_tensors=return_tensors).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(ValueError, "do_samples"):
model.generate(input_ids, do_samples=True)
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(ValueError, "foo"):
fake_model_kwargs = {"foo": "bar"}
model.generate(input_ids, **fake_model_kwargs)
# however, valid model_kwargs are accepted
valid_model_kwargs = {"attention_mask": create_tensor_fn(np.zeros_like(input_ids))}
model.generate(input_ids, **valid_model_kwargs)
...@@ -19,11 +19,13 @@ import unittest ...@@ -19,11 +19,13 @@ import unittest
from transformers import is_tf_available from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow from transformers.testing_utils import require_tf, slow
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available(): if is_tf_available():
import tensorflow as tf import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeq2SeqLM, tf_top_k_top_p_filtering from transformers import TFAutoModelForCausalLM, TFAutoModelForSeq2SeqLM, tf_top_k_top_p_filtering
@require_tf @require_tf
...@@ -124,7 +126,16 @@ class UtilsFunctionsTest(unittest.TestCase): ...@@ -124,7 +126,16 @@ class UtilsFunctionsTest(unittest.TestCase):
@require_tf @require_tf
class TFGenerationIntegrationTests(unittest.TestCase): class TFGenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
framework_dependent_parameters = {
"AutoModelForSeq2SeqLM": TFAutoModelForSeq2SeqLM,
"create_tensor_fn": tf.convert_to_tensor,
"return_tensors": "tf",
}
@slow @slow
def test_generate_tf_function_export(self): def test_generate_tf_function_export(self):
test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
...@@ -165,19 +176,3 @@ class TFGenerationIntegrationTests(unittest.TestCase): ...@@ -165,19 +176,3 @@ class TFGenerationIntegrationTests(unittest.TestCase):
tf_func_outputs = serving_func(**inputs)["sequences"] tf_func_outputs = serving_func(**inputs)["sequences"]
tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_length) tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_length)
tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs) tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs)
def test_validate_generation_inputs(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
model = TFAutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-t5")
encoder_input_str = "Hello world"
input_ids = tokenizer(encoder_input_str, return_tensors="tf").input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(ValueError, "do_samples"):
model.generate(input_ids, do_samples=True)
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(ValueError, "foo"):
fake_model_kwargs = {"foo": "bar"}
model.generate(input_ids, **fake_model_kwargs)
...@@ -23,6 +23,7 @@ from transformers import is_torch_available, pipeline ...@@ -23,6 +23,7 @@ from transformers import is_torch_available, pipeline
from transformers.testing_utils import require_torch, slow, torch_device from transformers.testing_utils import require_torch, slow, torch_device
from ..test_modeling_common import floats_tensor, ids_tensor from ..test_modeling_common import floats_tensor, ids_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_torch_available(): if is_torch_available():
...@@ -1790,7 +1791,16 @@ class UtilsFunctionsTest(unittest.TestCase): ...@@ -1790,7 +1791,16 @@ class UtilsFunctionsTest(unittest.TestCase):
@require_torch @require_torch
class GenerationIntegrationTests(unittest.TestCase): class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_torch_available():
framework_dependent_parameters = {
"AutoModelForSeq2SeqLM": AutoModelForSeq2SeqLM,
"create_tensor_fn": torch.tensor,
"return_tensors": "pt",
}
@slow @slow
def test_diverse_beam_search(self): def test_diverse_beam_search(self):
article = """Justin Timberlake and Jessica Biel, welcome to parenthood. article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
...@@ -3022,26 +3032,6 @@ class GenerationIntegrationTests(unittest.TestCase): ...@@ -3022,26 +3032,6 @@ class GenerationIntegrationTests(unittest.TestCase):
max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max() max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max()
self.assertTrue(max_score_diff < 1e-5) self.assertTrue(max_score_diff < 1e-5)
def test_validate_generation_inputs(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta")
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-roberta")
encoder_input_str = "Hello world"
input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(ValueError, "do_samples"):
model.generate(input_ids, do_samples=True)
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(ValueError, "foo"):
fake_model_kwargs = {"foo": "bar"}
model.generate(input_ids, **fake_model_kwargs)
# However, valid model_kwargs are accepted
valid_model_kwargs = {"attention_mask": torch.zeros_like(input_ids)}
model.generate(input_ids, **valid_model_kwargs)
def test_eos_token_id_int_and_list_greedy_search(self): def test_eos_token_id_int_and_list_greedy_search(self):
generation_kwargs = { generation_kwargs = {
"do_sample": False, "do_sample": False,
......
...@@ -466,12 +466,13 @@ def module_to_test_file(module_fname): ...@@ -466,12 +466,13 @@ def module_to_test_file(module_fname):
# This list contains the list of test files we expect never to be launched from a change in a module/util. Those are # This list contains the list of test files we expect never to be launched from a change in a module/util. Those are
# launched separately. # launched separately.
EXPECTED_TEST_FILES_NEVER_TOUCHED = [ EXPECTED_TEST_FILES_NEVER_TOUCHED = [
"tests/utils/test_doc_samples.py", # Doc tests "tests/generation/test_framework_agnostic.py", # Mixins inherited by actual test classes
"tests/mixed_int8/test_mixed_int8.py", # Mixed-int8 bitsandbytes test
"tests/pipelines/test_pipelines_common.py", # Actually checked by the pipeline based file "tests/pipelines/test_pipelines_common.py", # Actually checked by the pipeline based file
"tests/sagemaker/test_single_node_gpu.py", # SageMaker test "tests/sagemaker/test_single_node_gpu.py", # SageMaker test
"tests/sagemaker/test_multi_node_model_parallel.py", # SageMaker test "tests/sagemaker/test_multi_node_model_parallel.py", # SageMaker test
"tests/sagemaker/test_multi_node_data_parallel.py", # SageMaker test "tests/sagemaker/test_multi_node_data_parallel.py", # SageMaker test
"tests/mixed_int8/test_mixed_int8.py", # Mixed-int8 bitsandbytes test "tests/utils/test_doc_samples.py", # Doc tests
] ]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment