test_utils.py 141 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import copy
18
import inspect
19
import tempfile
20
import unittest
21
import warnings
22

23
import numpy as np
24
from parameterized import parameterized
25

26
from transformers import is_torch_available, pipeline, set_seed
27
from transformers.testing_utils import (
28
    is_flaky,
29
    require_accelerate,
Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
30
    require_auto_gptq,
31
    require_quanto,
32
33
34
35
36
    require_torch,
    require_torch_multi_accelerator,
    slow,
    torch_device,
)
37

38
from ..test_modeling_common import floats_tensor, ids_tensor
39
from .test_framework_agnostic import GenerationIntegrationTestsMixin
40

41
42
43
44

if is_torch_available():
    import torch

45
    from transformers import (
46
        AutoModelForCausalLM,
47
        AutoModelForSeq2SeqLM,
48
49
        AutoModelForSpeechSeq2Seq,
        AutoModelForVision2Seq,
50
        AutoProcessor,
51
        AutoTokenizer,
52
        BartForCausalLM,
53
54
55
56
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
57
        ImageGPTForCausalImageModeling,
58
        SpeechEncoderDecoderModel,
59
    )
60
    from transformers.cache_utils import DynamicCache, QuantoQuantizedCache
61
62
63
64
65
66
    from transformers.generation import (
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        DisjunctiveConstraint,
67
68
69
70
        GenerateBeamDecoderOnlyOutput,
        GenerateBeamEncoderDecoderOutput,
        GenerateDecoderOnlyOutput,
        GenerateEncoderDecoderOutput,
71
        GenerationConfig,
72
73
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
74
        LogitsProcessorList,
75
        MaxLengthCriteria,
76
        MinLengthLogitsProcessor,
77
78
79
80
81
        PhrasalConstraint,
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
        StoppingCriteria,
        StoppingCriteriaList,
82
83
        WatermarkDetector,
        WatermarkingConfig,
84
    )
85
    from transformers.generation.utils import _speculative_sampling
86
87
88
89
90


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
91
    input_name = "input_ids"
92
    max_new_tokens = 3
93

94
    def _get_input_ids_and_config(self, batch_size=2):
95
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Suraj Patil's avatar
Suraj Patil committed
96
        input_ids = inputs_dict[self.input_name]
97

98
        input_ids = input_ids[:batch_size]
99
100
101

        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
102
103
104
            if isinstance(config.eos_token_id, int):
                config.eos_token_id = [config.eos_token_id]
            config.pad_token_id = config.eos_token_id[0]
105
        attention_mask = torch.ones_like(input_ids, dtype=torch.long)
106

107
108
109
110
111
        # It is important set set the eos_token_id to None to ensure that no sequences
        # shorter than `max_length` can be generated
        config.eos_token_id = None
        config.forced_eos_token_id = None

112
        return config, input_ids, attention_mask
113
114

    @staticmethod
115
    def _get_logits_processor_and_warper_kwargs(
116
117
118
119
        input_length,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
    ):
120
121
122
        process_kwargs = {
            "bad_words_ids": [[1, 0]],
            "repetition_penalty": 1.2,
123
            "remove_invalid_values": True,
124
        }
125
126
127
128
        # NoRepeatNGramLogitsProcessor + forced tokens may result in no valid continuations
        if forced_bos_token_id is None and forced_eos_token_id is None:
            process_kwargs["no_repeat_ngram_size"] = 2

129
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
130
        return process_kwargs, warp_kwargs
131
132

    @staticmethod
133
    def _get_beam_kwargs(num_return_sequences=1):
134
135
136
137
138
139
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
140
        return beam_kwargs
141

142
    @staticmethod
143
    def _get_diverse_beam_kwargs(num_return_sequences=1):
144
145
146
147
148
149
150
151
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
152
        return beam_kwargs
153

154
    @staticmethod
155
    def _get_constrained_beam_kwargs(num_return_sequences=1):
156
157
158
159
160
161
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": num_return_sequences * 4,
            "num_return_sequences": num_return_sequences,
        }
162
        return beam_kwargs
163

164
    @staticmethod
165
166
167
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
168
        encoder = model.get_encoder()
169
170
171
172
173
174
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
175
176
177
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
178
179
180
        generation_config = copy.deepcopy(model.generation_config)
        model._prepare_special_tokens(generation_config)
        input_ids = torch.zeros_like(input_ids[:, :1]) + generation_config.decoder_start_token_id
181
182
183
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

184
185
186
187
188
189
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        output_scores=False,
190
        output_logits=False,
191
192
193
194
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
195
        logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
196
197
198
            input_ids.shape[-1],
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
199
200
        )

201
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
202
203
204
205
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
206
            max_new_tokens=self.max_new_tokens,
207
208
209
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
210
            output_logits=output_logits,
211
212
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
213
            **model_kwargs,
214
215
        )

216
        return output_generate
217
218
219
220
221
222
223
224
225
226

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        num_return_sequences,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
227
        output_logits=False,
228
229
230
231
232
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
233
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
234
235
236
237
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
238
            max_new_tokens=self.max_new_tokens,
239
240
            num_return_sequences=num_return_sequences,
            output_scores=output_scores,
241
            output_logits=output_logits,
242
243
244
245
246
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **logits_warper_kwargs,
            **process_kwargs,
247
            **model_kwargs,
248
249
        )

250
        return output_generate
251
252
253
254
255
256
257
258
259

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
260
        output_logits=False,
261
262
263
264
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
265
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
266
267
268
        output_generate = model.generate(
            input_ids,
            do_sample=False,
269
            max_new_tokens=self.max_new_tokens,
270
            output_scores=output_scores,
271
            output_logits=output_logits,
272
273
274
275
276
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
277
            **model_kwargs,
278
279
        )

280
        return output_generate
281
282
283
284
285
286
287
288
289

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_warper_kwargs,
        output_scores=False,
290
        output_logits=False,
291
292
293
294
295
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
296
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
297
298
299
        output_generate = model.generate(
            input_ids,
            do_sample=True,
300
            max_new_tokens=self.max_new_tokens,
301
            output_scores=output_scores,
302
            output_logits=output_logits,
303
304
305
306
307
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_warper_kwargs,
308
            **model_kwargs,
309
310
        )

311
        return output_generate
312
313
314
315
316
317
318
319
320

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
321
        output_logits=False,
322
323
324
325
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
326
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
327
328
329
        output_generate = model.generate(
            input_ids,
            do_sample=False,
330
            max_new_tokens=self.max_new_tokens,
331
            output_scores=output_scores,
332
            output_logits=output_logits,
333
334
335
336
337
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
338
            **model_kwargs,
339
340
        )

341
        return output_generate
342

343
344
345
346
347
348
349
350
351
    def _constrained_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        constraints,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
352
        output_logits=False,
353
354
355
356
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
357
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
358
359
360
        output_generate = model.generate(
            input_ids,
            do_sample=False,
361
            max_new_tokens=self.max_new_tokens,
362
            output_scores=output_scores,
363
            output_logits=output_logits,
364
365
366
367
368
369
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            constraints=constraints,
            **beam_kwargs,
            **logits_process_kwargs,
370
            **model_kwargs,
371
372
        )

373
        return output_generate
374

375
376
377
378
379
380
    def _contrastive_generate(
        self,
        model,
        input_ids,
        attention_mask,
        output_scores=False,
381
        output_logits=False,
382
383
384
385
386
387
388
389
390
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        contrastive_search_kwargs = {
            "penalty_alpha": 0.6,
            "top_k": 5,
        }

391
        logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
392
393
394
395
396
397
398
399
400
401
            input_ids.shape[-1],
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
        )

        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
402
            max_new_tokens=self.max_new_tokens,
403
404
405
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
406
            output_logits=output_logits,
407
408
409
410
411
412
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
            **model_kwargs,
            **contrastive_search_kwargs,
        )

413
        return output_generate
414

415
416
    def test_greedy_generate(self):
        for model_class in self.all_generative_model_classes:
417
            config, input_ids, attention_mask = self._get_input_ids_and_config()
418

419
            model = model_class(config).to(torch_device).eval()
420
            output_generate = self._greedy_generate(model=model, input_ids=input_ids, attention_mask=attention_mask)
421

422
423
424
425
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
426

427
428
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
429
            config, input_ids, attention_mask = self._get_input_ids_and_config()
430

431
432
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
433
            output_generate = self._greedy_generate(
434
435
436
437
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_scores=True,
438
                output_logits=True,
439
440
441
442
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
443
444

            if model.config.is_encoder_decoder:
445
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
446
447
                self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
                # Retrocompatibility check
448
449
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
450
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
451
452
                self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
                # Retrocompatibility check
453
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
454

455
            self._check_outputs(output_generate, input_ids, model.config)
456
457
458

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
459
            config, input_ids, attention_mask = self._get_input_ids_and_config()
460
461

            if not hasattr(config, "use_cache"):
462
                self.skipTest("This model doesn't support caching")
463
464

            config.use_cache = True
465
            config.is_decoder = True
466
            model = model_class(config).to(torch_device).eval()
467
            output_generate = self._greedy_generate(
468
469
                model=model,
                input_ids=input_ids,
470
                attention_mask=attention_mask,
471
                output_scores=True,
472
                output_logits=True,
473
474
475
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
476
            )
477

478
479
480
481
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
482
            self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
483
484
485

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
486
            config, input_ids, attention_mask = self._get_input_ids_and_config()
487

488
489
            model = model_class(config).to(torch_device).eval()
            process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
490
491
492
493
494
                input_ids.shape[-1],
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
            )

495
            output_generate = self._sample_generate(
496
497
498
499
500
501
502
503
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                num_return_sequences=1,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )

504
505
506
507
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
508

509
510
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
511
            config, input_ids, attention_mask = self._get_input_ids_and_config()
512

513
514
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
515

516
            process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
517
518
519
                input_ids.shape[-1],
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
520
            )
521

522
            output_generate = self._sample_generate(
523
524
                model=model,
                input_ids=input_ids,
525
                attention_mask=attention_mask,
526
527
528
529
                num_return_sequences=2,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
530
                output_logits=True,
531
532
533
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
534
535
536
            )

            if model.config.is_encoder_decoder:
537
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
538
539
                self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
                # Retrocompatibility check
540
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
541
            else:
542
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
543
544
                self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
                # Retrocompatibility check
545
546
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

547
            self._check_outputs(output_generate, input_ids, model.config, num_return_sequences=2)
548
549
550

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
551
            config, input_ids, attention_mask = self._get_input_ids_and_config()
552

553
            model = model_class(config).to(torch_device).eval()
554

555
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
556
557
558
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
559
            )
560
            beam_kwargs = self._get_beam_kwargs()
561

562
            output_generate = self._beam_search_generate(
563
564
                model=model,
                input_ids=input_ids,
565
                attention_mask=attention_mask,
566
567
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
568
            )
569

570
571
572
573
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
574
575
576

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
577
            config, input_ids, attention_mask = self._get_input_ids_and_config()
578
579

            # disable cache
580
            config.use_cache = False
581

582
            model = model_class(config).to(torch_device).eval()
583
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
584
585
586
587
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )
588
589
            beam_kwargs = self._get_beam_kwargs()
            output_generate = self._beam_search_generate(
590
591
                model=model,
                input_ids=input_ids,
592
                attention_mask=attention_mask,
593
594
595
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
596
                output_logits=True,
597
598
599
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
600
601
            )
            if model.config.is_encoder_decoder:
602
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
603
604
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
605
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
606
            else:
607
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
608
609
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
610
611
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

612
613
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
614
615
616
617
618
            )

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
619
            config, input_ids, attention_mask = self._get_input_ids_and_config()
620
621

            if not hasattr(config, "use_cache"):
622
                self.skipTest("This model doesn't support caching")
623
624

            model = model_class(config).to(torch_device).eval()
625
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
626
627
628
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
629
630
            )

631
            beam_kwargs = self._get_beam_kwargs()
632
633

            config.use_cache = True
634
            config.is_decoder = True
635
            model = model_class(config).to(torch_device).eval()
636
            output_generate = self._beam_search_generate(
637
638
639
640
641
642
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
643
                output_logits=True,
644
645
646
647
648
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

649
650
651
652
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
653
654
655
            self._check_outputs(
                output_generate, input_ids, model.config, use_cache=True, num_return_sequences=beam_kwargs["num_beams"]
            )
656

657
    @require_accelerate
658
    @require_torch_multi_accelerator
659
660
    def test_model_parallel_beam_search(self):
        for model_class in self.all_generative_model_classes:
661
662
663
            if "xpu" in torch_device:
                return unittest.skip("device_map='auto' does not work with XPU devices")

664
665
666
            if model_class._no_split_modules is None:
                continue

667
            config, input_ids, attention_mask = self._get_input_ids_and_config()
668
669
670
671
672
673
674
675
676

            model = model_class(config).eval()
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto")

                new_model.generate(
                    input_ids,
                    attention_mask=attention_mask,
677
                    max_new_tokens=self.max_new_tokens,
678
679
680
                    num_beams=2,
                )

681
682
    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
683
            config, input_ids, attention_mask = self._get_input_ids_and_config()
684

685
            _, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
686

687
            model = model_class(config).to(torch_device).eval()
688
            beam_kwargs = self._get_beam_kwargs()
689

690
            output_generate = self._beam_sample_generate(
691
692
                model=model,
                input_ids=input_ids,
693
                attention_mask=attention_mask,
694
695
                beam_kwargs=beam_kwargs,
                logits_warper_kwargs=logits_warper_kwargs,
696
            )
697

698
699
700
701
702
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])

703
704
705
706
707
708
709
710
711
712
713
714
            if "inputs_embeds" in set(inspect.signature(model.prepare_inputs_for_generation).parameters):
                input_embeds = model.get_input_embeddings()(input_ids)
                beam_kwargs.update({"inputs_embeds": input_embeds})
                output_generate2 = self._beam_sample_generate(
                    model=model,
                    input_ids=None,
                    attention_mask=attention_mask,
                    beam_kwargs=beam_kwargs,
                    logits_warper_kwargs=logits_warper_kwargs,
                )

                torch.testing.assert_close(output_generate[:, input_embeds.shape[1] :], output_generate2)
715
716
717

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
718
            config, input_ids, attention_mask = self._get_input_ids_and_config()
719
720

            # disable cache
721
            config.use_cache = False
722

723
            model = model_class(config).to(torch_device).eval()
724
725
            _, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
            beam_kwargs = self._get_beam_kwargs()
726

727
            output_generate = self._beam_sample_generate(
728
729
730
731
732
733
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
734
                output_logits=True,
735
736
737
738
739
740
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
741
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
742
743
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
744
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
745
            else:
746
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
747
748
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
749
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
750

751
752
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
753
            )
754

755
    def test_generate_without_input_ids(self):
756
        config, _, _ = self._get_input_ids_and_config()
757

758
759
760
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return
761

762
763
764
765
        # hack in case they are equal, otherwise the attn mask will be [0]
        if config.bos_token_id == config.pad_token_id:
            config.pad_token_id = None

766
767
768
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
769

770
771
772
            output_ids_generate = model.generate(
                do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True
            )
773
            self.assertIsNotNone(output_ids_generate)
774

775
776
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
777
            config, input_ids, attention_mask = self._get_input_ids_and_config()
778

779
            model = model_class(config).to(torch_device).eval()
780
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
781
782
783
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
784
785
786
            )

            # check `generate()` and `group_beam_search()` are equal
787
788
            beam_kwargs = self._get_diverse_beam_kwargs()
            output_generate = self._group_beam_search_generate(
789
790
                model=model,
                input_ids=input_ids,
791
                attention_mask=attention_mask,
792
793
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
794
            )
795
796
797
798
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
799

800
            # check `group_beam_search` for higher than 1 `num_return_sequences`
801
            num_return_sequences = 2
802
803
            beam_kwargs = self._get_diverse_beam_kwargs(num_return_sequences=num_return_sequences)
            output_generate = self._group_beam_search_generate(
804
805
806
807
808
809
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
810
811
812
813
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
814

815
816
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
817
            config, input_ids, attention_mask = self._get_input_ids_and_config()
818
            config.use_cache = False
819

820
            model = model_class(config).to(torch_device).eval()
821
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
822
823
824
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
825
826
            )

827
828
            beam_kwargs = self._get_diverse_beam_kwargs()
            output_generate = self._group_beam_search_generate(
829
830
                model=model,
                input_ids=input_ids,
831
                attention_mask=attention_mask,
832
833
834
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
835
                output_logits=True,
836
837
838
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
839
840
            )
            if model.config.is_encoder_decoder:
841
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
842
843
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
844
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
845
            else:
846
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
847
848
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
849
850
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

851
852
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
853
854
            )

855
856
    # TODO: @gante
    @is_flaky()
857
858
    def test_constrained_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
859
            config, input_ids, attention_mask = self._get_input_ids_and_config()
860
861
862

            model = model_class(config).to(torch_device).eval()

863
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
864
865
866
867
868
869
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )

            # Sample constraints
870
871
            min_id = 3
            max_id = config.vocab_size
872

873
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
874
875
876
877
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

878
879
            beam_kwargs = self._get_constrained_beam_kwargs()
            output_generate = self._constrained_beam_search_generate(
880
881
882
883
884
885
886
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
887
888
889
890
891
892

            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])

893
894
895
            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

896
            # check`constrained_beam_search` for higher than 1 `num_return_sequences`
897
            # Sample constraints
898
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
899
900
901
902
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

903
            beam_kwargs = self._get_constrained_beam_kwargs(num_return_sequences=2)
904

905
            output_generate = self._constrained_beam_search_generate(
906
907
908
909
910
911
912
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
913
914
915
916
917

            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
918
919
920
921
922
923

            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

    def test_constrained_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
924
            config, input_ids, attention_mask = self._get_input_ids_and_config()
925
926
927
928
929

            # disable cache
            config.use_cache = False

            model = model_class(config).to(torch_device).eval()
930
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
931
932
933
934
935
936
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )

            # Sample constraints
937
938
            min_id = 3
            max_id = model.config.vocab_size
939
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
940
941
942
943
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

944
945
            beam_kwargs = self._get_constrained_beam_kwargs()
            output_generate = self._constrained_beam_search_generate(
946
947
948
949
950
951
952
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
953
                output_logits=True,
954
955
956
957
958
959
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
960
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
961
962
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
963
964
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
            else:
965
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
966
967
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
968
969
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

970
971
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
972
973
            )

974
975
976
    def test_contrastive_generate(self):
        for model_class in self.all_generative_model_classes:
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
977
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
978
                self.skipTest("Won't fix: old model with different cache format")
979

980
            config, input_ids, attention_mask = self._get_input_ids_and_config()
981
982
983

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
984
                self.skipTest("This model doesn't support caching")
985
986
987
988
989
            config.use_cache = True
            config.is_decoder = True

            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
990
            output_generate = self._contrastive_generate(
991
                model=model, input_ids=input_ids, attention_mask=attention_mask
992
            )
993
994
995
996
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
997
998
999
1000

    def test_contrastive_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
1001
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1002
                self.skipTest("Won't fix: old model with different cache format")
1003

1004
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1005
1006
1007

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1008
                self.skipTest("This model doesn't support caching")
1009
1010
1011
1012
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
1013
            output_generate = self._contrastive_generate(
1014
1015
1016
1017
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_scores=True,
1018
                output_logits=True,
1019
1020
1021
1022
1023
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

1024
1025
1026
1027
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
1028
            self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
1029

1030
1031
1032
    def test_contrastive_generate_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
1033
1034
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer", "speech2text"]):
                self.skipTest("Won't fix: old model with different cache format")
tomeras91's avatar
tomeras91 committed
1035
            if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode", "jamba"]):
1036
                self.skipTest("TODO: fix me")
1037

1038
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1039
1040
1041

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1042
                self.skipTest("This model doesn't support caching")
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=True,
1055
                max_new_tokens=self.max_new_tokens,
1056
1057
1058
1059
1060
1061
1062
1063
                attention_mask=attention_mask,
            )

            high_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=False,
1064
                max_new_tokens=self.max_new_tokens,
1065
1066
1067
1068
                attention_mask=attention_mask,
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
    def test_beam_search_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
                self.skipTest("Won't fix: old model with different cache format")
            if any(
                model_name in model_class.__name__.lower()
                for model_name in [
                    "bloom",
                    "ctrl",
                    "gptbigcode",
                    "transo_xl",
                    "xlnet",
                    "cpm",
tomeras91's avatar
tomeras91 committed
1083
                    "jamba",
1084
1085
1086
                ]
            ):
                self.skipTest("May fix in the future: need model-specific fixes")
1087
            config, input_ids, _ = self._get_input_ids_and_config(batch_size=2)
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
            # batch_size=1 is ok, but batch_size>1 will cause non-identical output

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(input_ids, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=True)

            high_output = model.generate(
                input_ids, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=False
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1103
    @parameterized.expand([("random",), ("same",)])
1104
    @is_flaky()  # Read NOTE (1) below. If there are API issues, all attempts will fail.
1105
    def test_assisted_decoding_matches_greedy_search(self, assistant_type):
1106
        # This test ensures that the assisted generation does not introduce output changes over greedy search.
1107
1108
1109
1110
1111
        # NOTE (1): The sentence above is true most of the time, there is a tiny difference in the logits due to matmul
        # shape differences -- and it may result in a different output. The input shape difference happens in the
        # main model, that runs the forward pass with several candidates at once (as opposed to generating one token at
        # a time). See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 for more info.
        # NOTE (2): It breaks the pattern in the tests above, for multiple reasons:
1112
        # - assisted_decoding, contrarily to the other methods, can't be called on its own (e.g. needs to
1113
        # prepare the assistant encoder outputs in the main generate body);
1114
1115
        # - assisted_decoding does not support `use_cache = False`
        # - assisted_decoding does not support `batch_size > 1`
1116
1117
1118

        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1119
                self.skipTest("Won't fix: old model with different cache format")
1120
1121
            if any(
                model_name in model_class.__name__.lower()
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1132
            ):
1133
                self.skipTest("May fix in the future: need model-specific fixes")
1134

1135
            # enable cache
1136
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1137

1138
1139
1140
            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                self.skipTest("This model doesn't support caching")
1141

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
1157
                "output_logits": True,
1158
1159
1160
1161
1162
1163
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }
            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

1164
1165
1166
1167
1168
1169
1170
            # test with the same assistant model or randomly init one
            # in the first case all candidate tokens are accepted, in the second none is accepted
            # case when some are accepted and some not is hard to reproduce, so let's hope this catches most errors :)
            if assistant_type == "random":
                assistant_model = model_class(config).to(torch_device).eval()
            else:
                assistant_model = model
1171
1172
1173
1174
1175
1176
1177
1178
1179
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs.update({"assistant_model": assistant_model})
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_assisted.sequences.tolist())
            for output in (output_greedy, output_assisted):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
1180

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
    @is_flaky()
    def test_prompt_lookup_decoding_matches_greedy_search(self):
        # This test ensures that the prompt lookup generation does not introduce output changes over greedy search.
        # This test is mostly a copy of test_assisted_decoding_matches_greedy_search

        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
                self.skipTest("Won't fix: old model with different cache format")
            if any(
                model_name in model_class.__name__.lower()
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
            ):
                self.skipTest("May fix in the future: need model-specific fixes")

            # enable cache
1205
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                self.skipTest("This model doesn't support caching")

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the prompt lookup tries to give the model 2 tokens, to ensure the input preparation of
            #    prompt lookup is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
1226
                "output_logits": True,
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }

            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            generation_kwargs.update({"prompt_lookup_num_tokens": 2})  # see b)
            output_prompt_lookup = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_prompt_lookup.sequences.tolist())
            for output in (output_greedy, output_prompt_lookup):
                self._check_outputs(output, input_ids, model.config, use_cache=True)

1242
    def test_assisted_decoding_sample(self):
1243
1244
1245
        # In this test we don't check assisted vs non-assisted output -- seeded assisted decoding with sample will not
        # match sample for the same seed, as the forward pass does not return the exact same logits (due to matmul with
        # different shapes, see https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535).
1246
1247
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1248
                self.skipTest("Won't fix: old model with different cache format")
1249
1250
            if any(
                model_name in model_class.__name__.lower()
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1261
            ):
1262
                self.skipTest("May fix in the future: need model-specific fixes")
1263
1264

            # enable cache
1265
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1266
1267
1268

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1269
                self.skipTest("This model doesn't support caching")
1270
1271
1272
1273

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            assistant_model = model
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": True,
                "assistant_model": assistant_model,
                "output_scores": True,
1290
                "output_logits": True,
1291
1292
1293
1294
1295
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
1296
1297
1298

            self._check_outputs(output_assisted, input_ids, model.config, use_cache=True)

1299
1300
1301
1302
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
1303
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1304
1305
1306
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue
Joao Gante's avatar
Joao Gante committed
1307
            model = model_class(config).to(torch_device)
1308
1309

            head_masking = {
1310
1311
1312
1313
1314
1315
1316
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1317
1318
1319
1320
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1321
            if not set(head_masking.keys()) < {*signature.parameters.keys()}:
1322
1323
1324
1325
1326
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1327
                    attention_mask=attention_mask,
1328
1329
1330
                    num_beams=1,
                    output_attentions=True,
                    return_dict_in_generate=True,
1331
                    remove_invalid_values=True,
1332
1333
1334
1335
1336
1337
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1338
    def test_left_padding_compatibility(self):
1339
1340
        # NOTE: left-padding results in small numerical differences. This is expected.
        # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
1341

1342
1343
1344
1345
1346
1347
1348
        # First, filter out models that don't support left padding
        # - The model must have generative capabilities
        if len(self.all_generative_model_classes) == 0:
            self.skipTest(reason="No generative architecture available for this model.")

        # - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
        decoder_only_classes = []
1349
        for model_class in self.all_generative_model_classes:
1350
            config, _, _ = self._get_input_ids_and_config()
1351
            if config.is_encoder_decoder:
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
                continue
            else:
                decoder_only_classes.append(model_class)
        if len(decoder_only_classes) == 0:
            self.skipTest(reason="No decoder-only architecture available for this model.")

        # - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
        #   added support for it yet. We skip these models for now.
        has_encoder_attributes = any(
            attr_name
            for attr_name in config.to_dict().keys()
            if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
        )
        if has_encoder_attributes:
            self.skipTest(
                reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
            )

        # Then, test left-padding
        def _prepare_model_kwargs(input_ids, attention_mask, signature):
            model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
            if "position_ids" in signature:
                position_ids = torch.cumsum(attention_mask, dim=-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                model_kwargs["position_ids"] = position_ids
            if "cache_position" in signature:
                cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
                model_kwargs["cache_position"] = cache_position
            return model_kwargs

        for model_class in decoder_only_classes:
1383
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1384
1385
1386
            model = model_class(config).to(torch_device).eval()
            signature = inspect.signature(model.forward).parameters.keys()

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
            # Without padding
            model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
            next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]

            # With left-padding (length 32)
            pad_size = (input_ids.shape[0], 32)
            padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id
            padded_input_ids = torch.cat((padding, input_ids), dim=1)
            padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
            model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
            next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]

            # They should result in very similar logits
            self.assertTrue(torch.allclose(next_logits_wo_padding, next_logits_with_padding, atol=1e-5))
1401

1402
1403
1404
1405
1406
1407
1408
1409
    def test_past_key_values_format(self):
        # Test that the KV cache is formatted correctly. Exceptions need to explicitly overwrite this test. Having a
        # standard KV cache format is important for a consistent API (and for advanced generation methods).
        for model_class in self.all_generative_model_classes:
            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            # If it doesn't support cache, pass the test
            if not hasattr(config, "use_cache"):
1410
                self.skipTest("This model doesn't support caching")
1411
1412
1413
1414
1415
1416
1417
1418

            model = model_class(config).to(torch_device)
            if "use_cache" not in inputs:
                inputs["use_cache"] = True
            outputs = model(**inputs)

            # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
            if "past_key_values" not in outputs:
1419
                self.skipTest("This model doesn't return `past_key_values`")
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

            num_hidden_layers = (
                getattr(config, "decoder_layers", None)
                or getattr(config, "num_decoder_layers", None)
                or config.num_hidden_layers
            )
            num_attention_heads = getattr(config, "decoder_attention_heads", config.num_attention_heads)
            embed_dim = getattr(config, "d_model", config.hidden_size)
            per_head_embed_dim = embed_dim // num_attention_heads

            past_kv = outputs["past_key_values"]
            self.assertEqual(len(past_kv), num_hidden_layers)

            # Encoder-Decoder checks
            if config.is_encoder_decoder:
                encoder_num_attention_heads = config.encoder_attention_heads
                encoder_per_head_embed_dim = embed_dim // encoder_num_attention_heads
                batch_size, seq_length = inputs["decoder_input_ids"].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[i]), 4)  # K V for the decoder + K V for the encoder = 4
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    # The sequence length for the encoder K V depends on the model. Since it is not manipulated in
                    # autoregressive generation, I'm keeping the test general and not checking the 3rd dim
                    self.assertEqual(
                        (past_kv[i][2].shape[0], past_kv[i][2].shape[1], past_kv[i][2].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )
                    self.assertEqual(
                        (past_kv[i][3].shape[0], past_kv[i][3].shape[1], past_kv[i][3].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )

            # Decoder-only checks
            else:
                # TODO: this line is only needed because of imagegpt, where "pixel_values" = "input_ids". Fix the
                # tests in imagegpt such that `prepare_config_and_inputs_for_common` returns the later (and the other
                # tests use it)
                key = "input_ids" if "input_ids" in inputs else "pixel_values"
                batch_size, seq_length = inputs[key].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[0]), 2)  # K V for the decoder = 2
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )

1473
1474
1475
1476
    def test_generate_from_inputs_embeds_decoder_only(self):
        # When supported, tests that the decoder model can generate from `inputs_embeds` instead of `input_ids`
        # if fails, you should probably update the `prepare_inputs_for_generation` function
        for model_class in self.all_generative_model_classes:
1477
            config, input_ids, _ = self._get_input_ids_and_config()
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

            # Ignore:
            # a) eos (to always output 20 tokens) and pad (so we don't try to infer the attn mask from the input_ids,
            #   which would cause a mismatch),
            config.pad_token_id = config.eos_token_id = -1
            # b) embedding scaling, the scaling factor applied after embeding from input_ids (requires knowledge of the
            #   variable that holds the scaling factor, which is model-dependent)
            if hasattr(config, "scale_embedding"):
                config.scale_embedding = False

            # This test is for decoder-only models (encoder-decoder models have native input embeddings support in the
            # decoder)
            if config.is_encoder_decoder:
                continue

            # Skip models without explicit support
            model = model_class(config).to(torch_device).eval()
            if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys():
                continue

            # Traditional way of generating text
            outputs_from_ids = model.generate(input_ids)
            self.assertEqual(outputs_from_ids.shape, (2, 20))

            # Same thing, but from input embeddings (`input_ids` is passed so the prompt is present in the output)
            inputs_embeds = model.get_input_embeddings()(input_ids)
            outputs_from_embeds = model.generate(input_ids, inputs_embeds=inputs_embeds)
            self.assertListEqual(outputs_from_ids.tolist(), outputs_from_embeds.tolist())

            # But if we pass different inputs_embeds, we should get different outputs
            torch.manual_seed(0)
            random_embeds = torch.rand_like(inputs_embeds)
            outputs_from_rand_embeds = model.generate(input_ids, inputs_embeds=random_embeds)
            with self.assertRaises(AssertionError):
                self.assertListEqual(outputs_from_rand_embeds.tolist(), outputs_from_embeds.tolist())

            # input_ids is not a required input -- if we don't pass it, the newly generated tokens will be the same
            outputs_from_embeds_wo_ids = model.generate(
                inputs_embeds=inputs_embeds, max_new_tokens=20 - inputs_embeds.shape[1]
            )
            self.assertListEqual(
                outputs_from_embeds[:, inputs_embeds.shape[1] :].tolist(),
1520
                outputs_from_embeds_wo_ids.tolist(),
1521
1522
            )

1523
1524
1525
1526
    def test_generate_continue_from_past_key_values(self):
        # Tests that we can continue generating from past key values, returned from a previous `generate` call
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["imagegpt"]):
1527
                self.skipTest("Won't fix: old model with unique inputs/caches/other")
1528
            if any(model_name in model_class.__name__.lower() for model_name in ["umt5"]):
1529
                self.skipTest("TODO: needs modeling or test input preparation fixes for compatibility")
1530
1531
1532
1533

            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            if not hasattr(config, "use_cache"):
1534
                self.skipTest("This model doesn't support caching")
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552

            # Let's make it always:
            # 1. use cache (for obvious reasons)
            # 2. generate to max length (which can be achieved by setting the eos token to an invalid value), which
            #    would make the test flaky (e.g. EOS is generated on iteration 1 on both generations, but the
            #    continuation would force it to generate beyond an EOS token)
            # 3. ignore `token_type_ids` for simplicity
            # 4. ignore `forced_eos_token_id`, which requires further manipulation of the continuation inputs and is
            #    active by default on some models
            config.use_cache = True
            if "token_type_ids" in inputs:
                del inputs["token_type_ids"]

            model = model_class(config).to(torch_device)
            model.eval()
            model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1
            model.generation_config.forced_eos_token_id = None

1553
            # If "past_key_values" is not returned, skip the test (e.g. RWKV uses a different cache name and format)
1554
1555
            outputs = model(**inputs)
            if "past_key_values" not in outputs:
1556
                self.skipTest("This model doesn't return `past_key_values`")
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598

            # Traditional way of generating text, with `return_dict_in_generate` to return the past key values
            outputs = model.generate(**inputs, do_sample=False, max_new_tokens=4, return_dict_in_generate=True)

            # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens). Note that the
            # inputs may need to be tweaked across `generate` calls (like the attention mask).
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=3, return_dict_in_generate=True)

            # Continue from the tokens generated above, preparing the inputs accordingly
            inputs["past_key_values"] = outputs_cached.past_key_values
            new_attention_len = outputs_cached.sequences.shape[-1]
            if config.is_encoder_decoder:
                inputs["decoder_input_ids"] = outputs_cached.sequences
                if "decoder_attention_mask" in inputs:
                    inputs["decoder_attention_mask"] = torch.nn.functional.pad(
                        inputs["decoder_attention_mask"],
                        (0, new_attention_len - inputs["decoder_attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            else:
                inputs["input_ids"] = outputs_cached.sequences
                if "attention_mask" in inputs:
                    inputs["attention_mask"] = torch.nn.functional.pad(
                        inputs["attention_mask"],
                        (0, new_attention_len - inputs["attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=1, return_dict_in_generate=True)

            # The two sets of generated text and past kv should be equal to each other
            self.assertListEqual(outputs.sequences.tolist(), outputs_cached.sequences.tolist())
            for layer_idx in range(len(outputs_cached.past_key_values)):
                for kv_idx in range(len(outputs_cached.past_key_values[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            outputs.past_key_values[layer_idx][kv_idx],
                            outputs_cached.past_key_values[layer_idx][kv_idx],
                        )
                    )

1599
1600
1601
1602
1603
1604
1605
1606
1607
    @parameterized.expand([(1, False), (1, True), (4, False)])
    def test_new_cache_format(self, num_beams, do_sample):
        # Tests that generating with the new format is exactly the same as the legacy one (for models that support it).
        # 馃憠 tests with and without beam search so that we can test with and without cache reordering.
        # 馃憠 tests with and without sampling so we can cover the most common use cases.
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_cache_class:
                self.skipTest("This model does not support the new cache format")

1608
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            generation_kwargs = {
                "max_new_tokens": 5,
                "do_sample": do_sample,
                "num_beams": num_beams,
                "num_return_sequences": num_beams,
                "return_dict_in_generate": True,  # Required to return `past_key_values`
            }

            # Sets seed before calling `generate` for the case with do_sample=True
            seed = torch.randint(0, 1000000, (1,)).item()
            set_seed(seed)
            legacy_results = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
            set_seed(seed)
            new_results = model.generate(
                input_ids, attention_mask=attention_mask, past_key_values=DynamicCache(), **generation_kwargs
            )

            # The two sets of generated sequences must match, despite the cache format between forward passes being
            # different
            self.assertListEqual(legacy_results.sequences.tolist(), new_results.sequences.tolist())
            self.assertTrue(isinstance(legacy_results.past_key_values, tuple))
            self.assertTrue(isinstance(new_results.past_key_values, DynamicCache))

            # The contents of the two caches, when converted to the same format (in both directions!), must match
            legacy_cache = legacy_results.past_key_values
            new_cache_converted = new_results.past_key_values.to_legacy_cache()
            for layer_idx in range(len(legacy_cache)):
                for kv_idx in range(len(legacy_cache[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            legacy_cache[layer_idx][kv_idx],
                            new_cache_converted[layer_idx][kv_idx],
                        )
                    )

            new_cache = new_results.past_key_values
            legacy_cache_converted = DynamicCache.from_legacy_cache(legacy_results.past_key_values)
            for layer_idx in range(len(new_cache)):
                for kv_idx in range(len(new_cache[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            new_cache[layer_idx][kv_idx],
                            legacy_cache_converted[layer_idx][kv_idx],
                        )
                    )

1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
    @require_quanto
    def test_generate_with_quant_cache(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_quantized_cache:
                self.skipTest("This model does not support the quantized cache format")

            config, input_ids, attention_mask = self._get_input_ids_and_config()
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            generation_kwargs = {
                "max_new_tokens": 5,
                "cache_implementation": "quantized",
                # careful with group size, should be divisor of model's hidden size
                "cache_config": {"backend": "quanto", "nbits": 2, "q_group_size": 8, "residual_length": 128},
                "return_dict_in_generate": True,  # Required to return `past_key_values`
            }

            results = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
            self.assertTrue(isinstance(results.past_key_values, QuantoQuantizedCache))

            # passing past key values of different type should raise Error
            with self.assertRaises(ValueError):
                model.generate(
                    input_ids, attention_mask=attention_mask, past_key_valyes=DynamicCache(), **generation_kwargs
                )

            # setting incorrect cache_config args should raise an Error, i.e. nbits=60 does not make sense
            generation_kwargs["cache_config"] = {"nbits": 60, "q_group_size": 8, "residual_length": 128}
            with self.assertRaises(ValueError):
                model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

1692
1693
1694
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
1695

1696
1697
1698
1699
1700
1701
1702
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

1703
1704
1705
        # unprocessed logits
        self._check_logits(num_sequences_in_output, output.logits, config=config)

1706
1707
1708
        # Attentions
        if config.is_encoder_decoder:
            # encoder
1709
            self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
            # decoder
            self._check_attentions_for_generate(
                num_sequences_in_output,
                output.decoder_attentions,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            attentions = output.attentions if not use_cache else output.attentions[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_attentions_for_generate(
                num_sequences_in_output,
                attentions=attentions,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1735
1736
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

tomeras91's avatar
tomeras91 committed
1761
        # Past Key Value States -- a few notes here:
1762
1763
        # 1. Its inner sequence length is with respect to the inputs of the latest forward pass, hence the "-1"
        # 2. Some old models still return `output.past_key_values` even without `use_cache=True`
tomeras91's avatar
tomeras91 committed
1764
1765
1766
        # 3. TODO (joao): A few models have different formats/types, skipping those until the cache refactor is
        # complete
        models_without_standard_cache = ("bloom", "ctrl", "fsmt", "gptbigcode", "mega", "reformer", "jamba")
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
        has_standard_cache = not any(
            model_name in config.__class__.__name__.lower() for model_name in models_without_standard_cache
        )
        if use_cache and has_standard_cache:
            past_key_values = output.past_key_values
            past_sequence_length = output.sequences.shape[-1] - 1
            self._check_past_key_values_for_generate(
                num_sequences_in_output,
                past_key_values,
                seq_length=past_sequence_length,
                config=config,
            )

1780
1781
1782
1783
1784
1785
    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

1786
1787
1788
1789
1790
1791
1792
1793
    def _check_logits(self, batch_size, scores, config):
        self.assertIsInstance(scores, tuple)
        self.assertListEqual([iter_scores.shape[0] for iter_scores in scores], [batch_size] * len(scores))
        # vocabulary difference equal to one (imagegptmodel?) or zero (all other models)
        vocab_diff = config.vocab_size - scores[0].shape[-1]
        self.assertTrue(vocab_diff in [0, 1])
        self.assertListEqual([config.vocab_size - score.shape[-1] for score in scores], [vocab_diff] * len(scores))

1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

1818
1819
1820
1821
1822
1823
1824
1825
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
1844

1845
1846
1847
1848
1849
1850
1851
1852
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
    def _check_past_key_values_for_generate(self, batch_size, past_key_values, seq_length, config, num_beam_groups=1):
        self.assertIsInstance(past_key_values, tuple)
        self.assertListEqual(
            [isinstance(iter_past_key_values, tuple) for iter_past_key_values in past_key_values],
            [True] * len(past_key_values),
        )

        # (batch, head, seq_length, head_features)
        expected_shape = (
            batch_size * num_beam_groups,
            config.num_key_value_heads if hasattr(config, "num_key_value_heads") else config.num_attention_heads,
            seq_length,
            config.hidden_size // config.num_attention_heads,
        )
        # check shape key, value
        self.assertListEqual(
            [layer_past_key_values[0].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )
        self.assertListEqual(
            [layer_past_key_values[1].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )

1877
    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
1878
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
1879
1880
        # set to same device. we don't care what device.

1881
1882
1883
1884
1885
1886
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
1887
1888
1889
1890
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
1891
1892
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
1893
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
1894
            if subseq == shorter:
1895
1896
1897
1898
1899
                flag = True
                break

        self.assertTrue(flag)

1900
1901
1902

@require_torch
class UtilsFunctionsTest(unittest.TestCase):
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
    def test_speculative_sampling(self):
        # assume vocab size 10, input length 5 + 3 generated candidates
        candidate_input_ids = torch.tensor([[8, 0, 3, 9, 8, 1, 4, 5]])  # input tokens
        candidate_logits = torch.tensor(
            [
                [
                    [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # generated 1
                    [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # generated 4
                    [-10.0, -10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0],  # generated 5
                ]
            ]
        )
        candidate_length = 3
        inf = float("inf")
        new_logits = torch.tensor(
            [
                [
                    [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # accepts 1
                    [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # accepts 4
                    [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 10.0, -inf],  # rejects 5, accepts 8
                    [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # N/A
                ]
            ]
        )
        last_assistant_token_is_eos = False
        validated_tokens, n_matches = _speculative_sampling(
            candidate_input_ids,
            candidate_logits,
            candidate_length,
            new_logits,
            last_assistant_token_is_eos,
        )
        self.assertTrue(n_matches.item() == 2)
        self.assertTrue(validated_tokens.tolist()[0] == [1, 4, 8])

1938
1939

@require_torch
1940
1941
1942
1943
class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
    # setting framework_dependent_parameters needs to be gated, just like its contents' imports
    if is_torch_available():
        framework_dependent_parameters = {
1944
            "AutoModelForCausalLM": AutoModelForCausalLM,
1945
            "AutoModelForSpeechSeq2Seq": AutoModelForSpeechSeq2Seq,
1946
            "AutoModelForSeq2SeqLM": AutoModelForSeq2SeqLM,
1947
            "AutoModelForVision2Seq": AutoModelForVision2Seq,
1948
1949
            "LogitsProcessorList": LogitsProcessorList,
            "MinLengthLogitsProcessor": MinLengthLogitsProcessor,
1950
            "create_tensor_fn": torch.tensor,
1951
            "floats_tensor": floats_tensor,
1952
1953
1954
            "return_tensors": "pt",
        }

1955
1956
    @slow
    def test_diverse_beam_search(self):
1957
        # PT-only test: TF doesn't have a diverse beam search implementation
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
1968
1969
1970
1971
1972
1973
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
1974
1975
1976
1977
1978
1979
1980
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
Sylvain Gugger's avatar
Sylvain Gugger committed
1981
1982
1983
1984
1985
1986
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the"
                " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle"
                " name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the"
                " first child for both. The couple announced the pregnancy in January. The name Silas is the middle"
                " name of Timberlake's maternal grandfather. It's also his own middle name.",
1987
1988
            ],
        )
1989

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
    def test_max_length_if_input_embeds(self):
        # PT-only test: TF doesn't have StoppingCriteria
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        max_length = 20
        input_len = input_ids.shape[-1]
        out_gen = model.generate(input_ids=input_ids, max_length=max_length)
        out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, max_length=max_length)
        self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
    def test_min_length_if_input_embeds(self):
        # PT-only test: TF doesn't have StoppingCriteria
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        min_length = 10
        input_len = input_ids.shape[-1]
        out_gen = model.generate(input_ids=input_ids, min_length=min_length)
        out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, min_length=min_length)
        self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])

2018
    def test_custom_stopping_criteria_overload_error(self):
2019
        # PT-only test: TF doesn't have StoppingCriteria
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(MaxLengthCriteria(max_length=42))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria)
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32)

    def test_custom_stopping_criteria(self):
2033
        # PT-only test: TF doesn't have StoppingCriteria
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        class DummyCriteria(StoppingCriteria):
            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids.shape[-1] >= 20

        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(DummyCriteria())

        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape),
            [1, 20],
        )
        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape),
            [1, 18],
        )

2055
    def test_stop_sequence_stopping_criteria(self):
2056
        # PT-only test: TF doesn't have StoppingCriteria
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
        prompt = """Hello I believe in"""
        generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart")
        output = generator(prompt)
        self.assertEqual(
            output,
            [
                {
                    "generated_text": (
                        "Hello I believe in in in number number number number number number number number number"
                    )
                }
            ],
        )

        output = generator(prompt, stop_sequence=" number")
        self.assertEqual(output, [{"generated_text": "Hello I believe in in in number"}])

2074
    def test_generate_non_nlp_input_ids_as_kwarg(self):
2075
        # PT-only test: AFAIK there's no non-NLP model architecture in TF that supports `input_ids` as its only input
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
        model = ImageGPTForCausalImageModeling.from_pretrained(
            "hf-internal-testing/tiny-random-imagegpt", max_length=10
        ).to(torch_device)
        input_ids = ids_tensor((3, 5), vocab_size=10)

        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 10))

2087
    def test_generate_input_values_as_encoder_kwarg(self):
2088
        # PT-only test: AFAIK there's no generate-capable architecture in TF that supports `input_values` as its input
2089
2090
2091
2092
2093
2094
2095
2096
2097
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

2098
    def test_transition_scores_group_beam_search_encoder_decoder(self):
2099
        # PT-only test: TF doesn't have group beam search
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=2,
            num_beam_groups=2,
            num_return_sequences=2,
2111
            diversity_penalty=1.0,
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2122
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2123
2124
2125
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))
2126

2127
    def test_beam_search_low_memory(self):
2128
2129
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model_inputs = tokenizer("I", return_tensors="pt")["input_ids"]

        low_output = model.generate(model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=True)

        high_output = model.generate(
            model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=False
        )
        self.assertListEqual(low_output.tolist(), high_output.tolist())

2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
    @slow
    def test_watermark_generation(self):
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model_inputs = tokenizer("I will be", return_tensors="pt").to(torch_device)
        input_len = model_inputs["input_ids"].shape[-1]

        # generation should work with both input types: WatermarkingConfig or Dict, so let's check it here :)
        watermark_config = WatermarkingConfig(bias=2.5, seeding_scheme="selfhash")
        _ = model.generate(**model_inputs, watermarking_config=watermark_config, do_sample=False, max_length=15)

2152
2153
        # We will not check watermarked text, since we check it in `logits_processors` tests
        # Checking if generated ids are as expected fails on different hardware
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
        args = {
            "bias": 2.0,
            "context_width": 1,
            "seeding_scheme": "selfhash",
            "greenlist_ratio": 0.25,
            "hashing_key": 15485863,
        }
        output = model.generate(**model_inputs, do_sample=False, max_length=15)
        output_selfhash = model.generate(**model_inputs, watermarking_config=args, do_sample=False, max_length=15)

2164
        # Check that the detector is detecting watermarked text
2165
2166
2167
2168
2169
2170
2171
        detector = WatermarkDetector(model_config=model.config, device=torch_device, watermarking_config=args)
        detection_out_watermarked = detector(output_selfhash[:, input_len:], return_dict=True)
        detection_out = detector(output[:, input_len:], return_dict=True)

        self.assertListEqual(detection_out_watermarked.prediction.tolist(), [True])
        self.assertListEqual(detection_out.prediction.tolist(), [False])

2172
2173
    @slow
    def test_beam_search_example_integration(self):
2174
        # PT-only test: TF doesn't have a BeamSearchScorer
2175
2176
        # exactly the example provided in the docstrings of beam search, which previously
        # failed after directly copying from it. Refer to PR #15555
2177
2178
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2179
2180
2181
2182
2183
2184
2185

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 3 beams
        num_beams = 3
        # define decoder start token ids
2186
        input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long)
2187
2188
2189
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
2190
        model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)}
2191

2192
2193
        outputs = model.generate(
            input_ids, num_beams=num_beams, min_length=5, eos_token_id=model.config.eos_token_id, **model_kwargs
2194
2195
2196
2197
2198
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(outputs, ["Wie alt bist du?"])

2199
2200
    @slow
    def test_constrained_beam_search(self):
2201
        # PT-only test: TF doesn't have constrained beam search
2202
2203
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2204

2205
2206
        force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231

        constraints = [
            PhrasalConstraint(force_tokens),
            PhrasalConstraint(force_tokens_2),
        ]

        starting_text = ["The soldiers were not prepared and"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            max_length=30,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2232
2233
                "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if"
                " the enemy attacked them, big weapons scared"
2234
2235
2236
            ],
        )

2237
2238
    @slow
    def test_constrained_beam_search_mixed(self):
2239
        # PT-only test: TF doesn't have constrained beam search
2240
2241
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271

        force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        flexible_phrases = tokenizer(
            ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False
        ).input_ids

        constraints = [
            PhrasalConstraint(force_phrase),
            DisjunctiveConstraint(flexible_phrases),
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            # max_length=20,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2272
2273
2274
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2275
2276
2277
2278
2279
            ],
        )

    @slow
    def test_constrained_beam_search_mixed_mixin(self):
2280
        # PT-only test: TF doesn't have constrained beam search
2281
2282
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309

        force_word = "scared"
        force_flexible = ["scream", "screams", "screaming", "screamed"]

        force_words_ids = [
            tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids,
            tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids,
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2310
2311
2312
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2313
2314
2315
            ],
        )

2316
2317
    @slow
    def test_cfg_mixin(self):
2318
2319
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355

        input = tokenizer(["The dragon flew over Paris,"], return_tensors="pt", return_attention_mask=True)
        input["input_ids"] = input["input_ids"].to(torch_device)
        input["attention_mask"] = input["attention_mask"].to(torch_device)

        outputs = model.generate(**input, max_new_tokens=32, guidance_scale=1.5)
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "The dragon flew over Paris, landing in the Rue de la Bastille. The crowd was so excited "
                'that they had to leave the city.\n\n"We\'re going to Paris!"\n'
            ],
        )

        neg = tokenizer(["France,"], return_tensors="pt", return_attention_mask=True)
        neg["input_ids"] = neg["input_ids"].to(torch_device)
        neg["attention_mask"] = neg["attention_mask"].to(torch_device)
        outputs = model.generate(
            **input,
            max_new_tokens=32,
            guidance_scale=1.5,
            negative_prompt_ids=neg["input_ids"],
            negative_prompt_attention_mask=neg["attention_mask"],
        )
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                'The dragon flew over Paris, landing on the pavement.\n\n"Paris!"\n\n"Paris!"\n\n"'
                'Paris!"\n\n"Paris!"\n\n"Paris!"\n\n'
            ],
        )

2356
2357
    @slow
    def test_constrained_beam_search_example_translation_mixin(self):
2358
        # PT-only test: TF doesn't have constrained beam search
2359
2360
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378

        encoder_input_str = "translate English to German: How old are you?"
        force_words = ["sind"]

        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
        force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2379
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2380

2381
2382
    @slow
    def test_constrained_beam_search_example_integration(self):
2383
        # PT-only test: TF doesn't have constrained beam search
2384
2385
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2386
2387
2388
2389
2390
2391
2392

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 5 beams
        num_beams = 5
        # define decoder start token ids
2393
        input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long)
2394
2395
2396
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
2397
        model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)}
2398
2399
2400
2401

        constraint_str = "sind"
        constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # remove eos token

2402
2403
2404
2405
2406
2407
2408
        outputs = model.generate(
            input_ids,
            num_beams=num_beams,
            force_words_ids=[constraint_token_ids],
            min_length=5,
            eos_token_id=model.config.eos_token_id,
            **model_kwargs,
2409
2410
2411
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2412
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2413

2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
    @slow
    def test_per_row_stopping_criteria(self):
        text = [
            "They completed the challenging puzzle, revealing the hidden",
            "Today a dragon flew over France",
            "The aroma of freshly baked pizza filled the kitchen",
        ]
        stop_strings = ["secrets"]

        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        tokenizer.padding_side = "left"
        tokenizer.pad_token_id = tokenizer.eos_token_id
        input_ids = tokenizer(text, return_tensors="pt", padding="longest", add_special_tokens=False).input_ids.to(
            torch_device
        )

        # normal generation with one stopping criteria
        out = model.generate(input_ids, max_length=15)
        out_text = tokenizer.batch_decode(out)
        expected_out = [
            "They completed the challenging puzzle, revealing the hidden secrets of the world.\n",
            "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced",
            "The aroma of freshly baked pizza filled the kitchen with a sense of freshness",
        ]
        self.assertListEqual(out_text, expected_out)

        # generation should stop at "secrets" for first batch only, filling the rest with eos tokens
        out = model.generate(input_ids, max_length=15, stop_strings=stop_strings, tokenizer=tokenizer)
        out_text = tokenizer.batch_decode(out)
        expected_out = [
            "They completed the challenging puzzle, revealing the hidden secrets<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>",
            "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced",
            "The aroma of freshly baked pizza filled the kitchen with a sense of freshness",
        ]
        self.assertListEqual(out_text, expected_out)

2451
    def test_constrained_beam_search_mixin_type_checks(self):
2452
        # PT-only test: TF doesn't have constrained beam search
2453
2454
        tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random")
        model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random")
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490

        encoder_input_str = "translate English to German: How old are you?"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids]
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[-1]])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[[-1]]])
2491

2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
    def test_batched_decoder_start_id(self):
        # PT-only test: TF doesn't support batched_decoder_start_id
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        decoder_start_token_id = bart_model.generation_config.decoder_start_token_id
        decoder_start_token_id_batch = [decoder_start_token_id] * input_ids.shape[0]

        outputs = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id)

        outputs_batched_ids = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id_batch)

        self.assertListEqual(outputs.tolist(), outputs_batched_ids.tolist())

2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
    def test_decoder_start_id_from_config(self):
        # Refer to: (#30899)
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        decoder_start_token_id = bart_model.generation_config.decoder_start_token_id

        # we should be able to take `decoder_start_token_id` from model's generation config if user passes a `GenerationConfig` type
        outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))

        # If the generatoin config has no `decoder_start_token_id` or `bos_token_id`, we will raise an error unless user passes it in config
        bart_model.generation_config.decoder_start_token_id = None
        bart_model.generation_config.bos_token_id = None
        outputs_with_user_id = bart_model.generate(
            input_ids,
            generation_config=GenerationConfig(do_sample=False, decoder_start_token_id=decoder_start_token_id),
        )

        self.assertListEqual(outputs.tolist(), outputs_with_user_id.tolist())

        with self.assertRaises(ValueError):
            outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))

2541
    def test_contrastive_search_batched(self):
2542
        # PT-only test: TF doesn't have constrained beam search
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
        # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs)
        articles = ["Foo", "Bar Baz"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)

        model.config.eos_token_id = None
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)
        input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(
            input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )

        batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True)
        out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True)
        self.assertEqual(batched_out, out)

        # output_sequences_batched.scores[0][1] -> 1st set of logits, 2nd sequence
        max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max()
        self.assertTrue(max_score_diff < 1e-5)

2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
    def test_logits_processor_not_inplace(self):
        # PT-only test: TF fixes were not made
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        out = model.generate(input_ids, output_logits=True, output_scores=True, return_dict_in_generate=True)
        out_with_temp = model.generate(
            input_ids,
            temperature=0.5,
            do_sample=True,
            output_logits=True,
            output_scores=True,
            return_dict_in_generate=True,
        )

        # if no logits processor is used, scores == logits. Otherwise, the processor has to modify the scores
        self.assertListEqual(out.logits[-1].tolist(), out.scores[-1].tolist())
        self.assertNotEqual(out_with_temp.logits[-1].tolist(), out_with_temp.scores[-1].tolist())

2588
    def test_eos_token_id_int_and_list_top_k_top_sampling(self):
2589
        # Has TF equivalent: this test relies on random sampling
2590
2591
2592
2593
2594
2595
2596
        generation_kwargs = {
            "do_sample": True,
            "num_beams": 1,
            "top_p": 0.7,
            "top_k": 10,
            "temperature": 0.7,
        }
2597
        expectation = 20
2598

2599
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
2600
        text = """Hello, my dog is cute and"""
2601
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
2602
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
2603

2604
2605
2606
        # Only some seeds will work both on CPU/GPU for a fixed `expectation` value.
        # The selected seed is not guaranteed to work on all torch versions.
        torch.manual_seed(1)
2607
2608
2609
2610
        eos_token_id = 846
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

2611
        torch.manual_seed(1)
2612
        eos_token_id = [846, 198]
2613
2614
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))
2615

2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
    def test_model_kwarg_encoder_signature_filtering(self):
        # Has TF equivalent: ample use of framework-specific code
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        article = """Hugging Face is a technology company based in New York and Paris."""
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        output = bart_model.generate(input_ids).cpu().numpy()

        # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an
        # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of
        # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and
        # saves the day.
        class FakeBart(BartForConditionalGeneration):
            def forward(self, input_ids, foo=None, **kwargs):
                return super().forward(input_ids, **kwargs)

        bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)
        fake_output = bart_model.generate(input_ids, foo="bar").cpu().numpy()
        self.assertTrue(np.array_equal(output, fake_output))

        # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail
        # because it doesn't do signature filtering.
        class FakeEncoder(bart_model.model.encoder.__class__):
            def forward(self, input_ids, **kwargs):
                return super().forward(input_ids, **kwargs)

        fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared).to(torch_device)
        bart_model.model.encoder = fake_encoder

        # Normal generation still works (the output will be different because the encoder weights are different)
        fake_output = bart_model.generate(input_ids).cpu().numpy()
        with self.assertRaises(TypeError):
            # FakeEncoder.forward() accepts **kwargs -> no filtering -> type error due to unexpected input "foo"
            bart_model.generate(input_ids, foo="bar")
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672

    def test_default_max_length_warning(self):
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Default generation config value of 20 -> emits warning
        with self.assertWarns(UserWarning):
            model.generate(input_ids)

        # Explicitly setting max_length to 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(input_ids, max_length=20)
            self.assertEqual(len(warning_list), 0)

        # Generation config max_length != 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
2673
            # generation_config is modified -> legacy mode is disabled = generation_config takes precedence
2674
2675
2676
            model.generation_config.max_length = 10
            model.generate(input_ids)
            self.assertEqual(len(warning_list), 0)
2677

2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
    def test_length_warning_assisted_generation(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # This should not raise any warning that min length is not feasible in candidate generation
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(
                input_ids,
                assistant_model=assistant,
                min_new_tokens=10,
                max_length=20,
            )
            self.assertEqual(len(warning_list), 0)

    def test_generated_length_assisted_generation(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)
        input_length = input_ids.shape[-1]

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            min_new_tokens=10,
            max_new_tokens=20,
        )
        self.assertTrue((10 + input_length) <= out.shape[-1] <= (20 + input_length))

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            min_new_tokens=10,
        )
        self.assertTrue((input_length + 10) <= out.shape[-1] <= 20)

2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
    def test_model_kwarg_assisted_decoding_decoder_only(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with token_type_ids
        outputs_tti = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
        )
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_tti.tolist(), outputs_normal.tolist())

        # Assistant model
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant.config.pad_token_id = tokenizer.eos_token_id

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_tti.tolist())

    def test_model_kwarg_assisted_decoding_encoder_decoder(self):
2763
2764
2765
2766
2767
2768
2769
2770
        """
        Tests that the following scenario is compatible with assisted generation:
        1. encoder-decoder main model
        2. encoder-decoder assistant model
        3. both have a custom input
        (e.g. Whisper)
        """

2771
2772
2773
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg that distorts the output
        class FakeBart(BartForConditionalGeneration):
2774
2775
            def forward(self, input_ids, past_key_values, foo=False, **kwargs):
                outs = super().forward(input_ids, past_key_values=past_key_values, **kwargs)
2776
2777
2778
2779
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs

2780
2781
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
                inputs["foo"] = foo
                return inputs

        model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
2800
        outputs_foo = model.generate(input_ids, foo=True)
2801
2802
2803
2804
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
2805
2806
2807
        assistant = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
2808
2809
2810
2811
2812
2813
2814
2815

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = assistant.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
            assistant_encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2827
2828

    def test_assisted_decoding_encoder_decoder_shared_encoder(self):
2829
2830
2831
2832
2833
2834
2835
2836
        """
        Tests that the following scenario is compatible with assisted generation:
        1. encoder-decoder main model
        2. decoder-only assistant model
        3. both have a custom input
        (e.g. DistilWhisper)
        """

2837
2838
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg called foo that distorts the output
2839
        class FakeBartSeq2Seq(BartForConditionalGeneration):
2840
2841
2842
2843
2844
2845
2846
2847
2848
            def forward(self, input_ids, foo=False, **kwargs):
                outs = super().forward(input_ids, **kwargs)
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs

            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
2849
2850
2851
2852
2853
2854
2855
2856
2857
                inputs["foo"] = foo
                return inputs

        class FakeBartCausalLM(BartForCausalLM):
            def forward(self, input_ids, attention_mask, past_key_values, foo=False, **kwargs):
                outs = super().forward(input_ids, attention_mask, past_key_values=past_key_values, **kwargs)
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs
2858

2859
2860
2861
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
2862
2863
2864
                inputs["foo"] = foo
                return inputs

2865
        model = FakeBartSeq2Seq.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
        outputs_foo = model.generate(input_ids, foo=True)
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
2884
2885
2886
        assistant = FakeBartCausalLM.from_pretrained(
            "hf-internal-testing/tiny-random-BartForConditionalGeneration"
        ).to(torch_device)
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = model.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950

    def test_assisted_decoding_num_assistant_tokens_heuristic_schedule(self):
        # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly.

        prompt = "Alice and Bob"
        checkpoint = "EleutherAI/pythia-160m-deduped"
        tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        inputs = tokenizer(prompt, return_tensors="pt")

        model = AutoModelForCausalLM.from_pretrained(checkpoint)

        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 5
        assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic"
        generation_kwargs = {
            "eos_token_id": -1,
            "max_new_tokens": 5,
            "do_sample": False,
            "assistant_model": assistant_model,
        }
        model.generate(**inputs, **generation_kwargs)
        # update_candidate_strategy is called only once and therefore, assistant_model.generation_config.num_assistant_tokens should be either 4 or 7
        self.assertTrue(assistant_model.generation_config.num_assistant_tokens in (4, 7))

    def test_assisted_decoding_num_assistant_tokens_heuristic_transient_schedule(self):
        # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly.

        prompt = "Alice and Bob"
        checkpoint = "EleutherAI/pythia-160m-deduped"
        tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        inputs = tokenizer(prompt, return_tensors="pt")

        model = AutoModelForCausalLM.from_pretrained(checkpoint)

        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 5
        assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic_transient"
        generation_kwargs = {
            "eos_token_id": -1,
            "max_new_tokens": 5,
            "do_sample": False,
            "assistant_model": assistant_model,
        }
        model.generate(**inputs, **generation_kwargs)
        # update_candidate_strategy is called once but assistant_model.generation_config.num_assistant_tokens should stay 5
        self.assertEqual(assistant_model.generation_config.num_assistant_tokens, 5)
2951

2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
    @slow
    def test_validate_assistant(self):
        # Generate a random sample:
        inputs = np.random.rand(160000)

        # Load a main encoder-decoder model:
        model_id = "openai/whisper-large-v2"
        processor = AutoProcessor.from_pretrained(model_id)
        model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        )
        model.to(torch_device)

        # process the input:
        features = processor(inputs, return_tensors="pt").to(torch_device)

        # Load an encoder-decoder assistant with same encoder as the main model:
        assistant_distil_model_id = "distil-whisper/distil-large-v2"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum())

        # Load its decoder only version:
        assistant_causal_lm = AutoModelForCausalLM.from_pretrained(
            assistant_distil_model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_causal_lm).sum())

        # Load an encoder-decoder assistant with a different encoder than the main model:
        assistant_distil_model_id = "openai/whisper-tiny"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum())

        # Load its decoder only version:
        assistant_causal_lm = AutoModelForCausalLM.from_pretrained(
            assistant_distil_model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        ).to(torch_device)
        # It will raise an error as the encoder of the main and assistant model are not compatible:
        with self.assertRaises(ValueError):
            model.generate(**features, assistant_model=assistant_causal_lm)

        # Load an encoder-decoder model with a different tokenizer than the main model:
        assistant_distil_model_id = "hf-internal-testing/tiny-random-SeamlessM4Tv2ForSpeechToText"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
        ).to(torch_device)
        # This should raise an error as the main and assistant model don't use the same tokenizer:
        with self.assertRaises(ValueError):
            model.generate(**features, assistant_model=assistant_seq_to_seq)

3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
    def test_compare_unprocessed_logit_scores(self):
        # Get unprocessed logit scores back from model generate function.
        # Assert that unprocessed logits from generate() are same as those from modal eval()

        # tell model to generate text and return unprocessed/unwarped logit scores
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = "generate yes or no: "
        input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device)

        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        with torch.no_grad():
            # Get logits for the next token from fwd pass
            logits_fwd = model(input_ids).logits[:, -1, :][0]

        # Get logits for the next token from generate function
        outputs = model.generate(
            input_ids=input_ids,
            return_dict_in_generate=True,
            output_logits=True,
            max_new_tokens=1,
            do_sample=True,
        )
        logits_gen = outputs.logits[0][0]

        # assert that unprocessed logits from generate() are same as those from modal eval()
        self.assertListEqual(logits_fwd.tolist(), logits_gen.tolist())

    def test_return_unprocessed_logit_scores(self):
        # tell model to generate text and return unprocessed/unwarped logit scores
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = "generate yes or no: "
        input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device)
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        outputs = model.generate(
            input_ids=input_ids, return_dict_in_generate=True, output_logits=True, max_new_tokens=3
        )

        # perform dummy check if unpreprocessed logits make sense.
        # do preselection on high probabilities; find scores of y and n tokens
        probs_all = torch.nn.functional.softmax(outputs.logits[2][0], dim=-1)
        indices = torch.argwhere(probs_all > 0.001)
        indices = indices[:, -1]
        tokens_max = tokenizer.batch_decode(indices, skip_special_tokens=True)
        probs_max = probs_all[probs_all > 0.001]

        self.assertTrue(len(indices) >= 2)
        next_token_dict = {str(t): p for t, p in zip(tokens_max, probs_max)}
        self.assertTrue("n" in next_token_dict)
        self.assertTrue("y" in next_token_dict)
        y_prob = next_token_dict["y"]
        n_prob = next_token_dict["n"]

        self.assertTrue(y_prob > 0.001 and n_prob > 0.001)
        self.assertTrue(y_prob <= 1.0 and n_prob <= 1.0)
3069

Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106

@require_torch
class TokenHealingTestCase(unittest.TestCase):
    @parameterized.expand(
        [
            (
                "square_bracket",
                'An example ["like this"] and another example [',
                'An example ["like this"] and another example ["',
            ),
            ("url", 'The link is <a href="http:', 'The link is <a href="http://'),
            # aggressive_healing: "http" shouldn't be replaced with "https"
            ("aggressive_healing", 'The link is <a href="http', 'The link is <a href="http'),
            ("trailing_whitespace", "I read a book about ", "I read a book about"),
            ("nothing_to_heal", "I read a book about", "I read a book about"),
            ("single_token", "I", "I"),
            ("empty_prompt", "", ""),
        ]
    )
    @require_auto_gptq
    def test_prompts(self, name, input, expected):
        model_name_or_path = "TheBloke/deepseek-llm-7B-base-GPTQ"
        tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
        completion_model = AutoModelForCausalLM.from_pretrained(
            model_name_or_path,
            device_map="auto",
            trust_remote_code=False,
            revision="main",
            use_cache=True,
        )
        input_ids = tokenizer(input, return_tensors="pt").input_ids.to(completion_model.device)

        healed_ids = completion_model.heal_tokens(input_ids)
        predicted = tokenizer.decode(healed_ids[0], skip_special_tokens=True)

        self.assertEqual(predicted, expected)

3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
    def test_generate_from_inputs_embeds_with_bos_token_id_is_none(self):
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        model.generate(inputs_embeds=inputs_embeds, max_length=20, bos_token_id=None)

        # bos_token_id is required when no input ids nor inputs_embeds is passed
        with self.assertRaises(ValueError):
            model.generate(max_length=20, bos_token_id=None)