".github/vscode:/vscode.git/clone" did not exist on "0ab465a5d2609f66281e239f80f1fff044061be1"
utils.py 24.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import itertools
import json
17
import linecache
18
import math
19
import os
20
import pickle
21
import socket
22
from logging import getLogger
23
from pathlib import Path
24
from typing import Callable, Dict, Iterable, List, Tuple, Union
25

26
27
import git
import numpy as np
28
import torch
29
import torch.distributed as dist
30
from rouge_score import rouge_scorer, scoring
31
from sacrebleu import corpus_bleu
32
33
from torch import nn
from torch.utils.data import Dataset, Sampler
34

35
from sentence_splitter import add_newline_to_end_of_each_sentence
36
from transformers import BartTokenizer, EvalPrediction, PreTrainedTokenizer
37
from transformers.file_utils import cached_property
38

39

40
41
42
43
44
45
46
47
try:
    from fairseq.data.data_utils import batch_by_size

    FAIRSEQ_AVAILABLE = True
except (ImportError, ModuleNotFoundError):
    FAIRSEQ_AVAILABLE = False


48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
    """From fairseq"""
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target)
    smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
    if ignore_index is not None:
        pad_mask = target.eq(ignore_index)
        nll_loss.masked_fill_(pad_mask, 0.0)
        smooth_loss.masked_fill_(pad_mask, 0.0)
    else:
        nll_loss = nll_loss.squeeze(-1)
        smooth_loss = smooth_loss.squeeze(-1)

    nll_loss = nll_loss.sum()  # mean()? Scared to break other math.
    smooth_loss = smooth_loss.sum()
    eps_i = epsilon / lprobs.size(-1)
    loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
66
    return loss, nll_loss
67
68


69
70
def lmap(f: Callable, x: Iterable) -> List:
    """list(map(f, x))"""
71
72
73
    return list(map(f, x))


74
def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict:
75
    """Uses sacrebleu's corpus_bleu implementation."""
76
    return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)}
77
78


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) -> Callable[[EvalPrediction], Dict]:
    def non_pad_len(tokens: np.ndarray) -> int:
        return np.count_nonzero(tokens != tokenizer.pad_token_id)

    def decode_pred(pred: EvalPrediction) -> Tuple[List[str], List[str]]:
        pred_str = tokenizer.batch_decode(pred.predictions, skip_special_tokens=True)
        label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
        pred_str = lmap(str.strip, pred_str)
        label_str = lmap(str.strip, label_str)
        return pred_str, label_str

    def summarization_metrics(pred: EvalPrediction) -> Dict:
        pred_str, label_str = decode_pred(pred)
        rouge: Dict = calculate_rouge(pred_str, label_str)
        summ_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
        rouge.update({"gen_len": summ_len})
        return rouge

    def translation_metrics(pred: EvalPrediction) -> Dict:
        pred_str, label_str = decode_pred(pred)
        bleu: Dict = calculate_bleu(pred_str, label_str)
        gen_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
        bleu.update({"gen_len": gen_len})
        return bleu

    compute_metrics_fn = summarization_metrics if "summarization" in task_name else translation_metrics
    return compute_metrics_fn


108
def trim_batch(
Lysandre's avatar
Lysandre committed
109
110
111
    input_ids,
    pad_token_id,
    attention_mask=None,
112
113
114
115
116
117
118
119
120
):
    """Remove columns that are populated exclusively by pad_token_id"""
    keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
    if attention_mask is None:
        return input_ids[:, keep_column_mask]
    else:
        return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])


121
class AbstractSeq2SeqDataset(Dataset):
122
123
124
    def __init__(
        self,
        tokenizer,
125
        data_dir,
126
127
        max_source_length,
        max_target_length,
128
        type_path="train",
129
        n_obs=None,
130
        prefix="",
131
        **dataset_kwargs
132
133
    ):
        super().__init__()
134
135
        self.src_file = Path(data_dir).joinpath(type_path + ".source")
        self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
136
137
138
139
140
141
142
        self.len_file = Path(data_dir).joinpath(type_path + ".len")
        if os.path.exists(self.len_file):
            self.src_lens = pickle_load(self.len_file)
            self.used_char_len = False
        else:
            self.src_lens = self.get_char_lens(self.src_file)
            self.used_char_len = True
143
144
145
146
        self.max_source_length = max_source_length
        self.max_target_length = max_target_length
        assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
        self.tokenizer = tokenizer
147
148
        self.prefix = prefix if prefix is not None else ""

149
        if n_obs is not None:
150
151
            self.src_lens = self.src_lens[:n_obs]
        self.pad_token_id = self.tokenizer.pad_token_id
152
153
        self.dataset_kwargs = dataset_kwargs
        dataset_kwargs.update({"add_prefix_space": True} if isinstance(self.tokenizer, BartTokenizer) else {})
154
155

    def __len__(self):
156
157
        return len(self.src_lens)

158
159
160
161
    @staticmethod
    def get_char_lens(data_file):
        return [len(x) for x in Path(data_file).open().readlines()]

162
163
164
165
166
    @cached_property
    def tgt_lens(self):
        """Length in characters of target documents"""
        return self.get_char_lens(self.tgt_file)

167
    def make_sortish_sampler(self, batch_size, distributed=False, shuffle=True, **kwargs):
168
        if distributed:
169
            return DistributedSortishSampler(self, batch_size, shuffle=shuffle, **kwargs)
170
        else:
171
            return SortishSampler(self.src_lens, batch_size, shuffle=shuffle)
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    def make_dynamic_sampler(self, max_tokens_per_batch=1024, **kwargs):
        assert FAIRSEQ_AVAILABLE, "Dynamic batch size requires `pip install fairseq`"
        assert not self.used_char_len, "You must call  python make_len_file.py before calling make_dynamic_sampler"
        sorted_indices = list(self.make_sortish_sampler(1024, shuffle=False))

        def num_tokens_in_example(i):
            return min(self.src_lens[i], self.max_target_length)

        # call fairseq cython function
        batch_sampler: List[List[int]] = batch_by_size(
            sorted_indices,
            num_tokens_fn=num_tokens_in_example,
            max_tokens=max_tokens_per_batch,
            required_batch_size_multiple=64,
        )
        shuffled_batches = [batch_sampler[i] for i in np.random.permutation(range(len(batch_sampler)))]
        # move the largest batch to the front to OOM quickly (uses an approximation for padding)
        approximate_toks_per_batch = [max(self.src_lens[i] for i in batch) * len(batch) for batch in shuffled_batches]
        largest_batch_idx = np.argmax(approximate_toks_per_batch)
        shuffled_batches[0], shuffled_batches[largest_batch_idx] = (
            shuffled_batches[largest_batch_idx],
            shuffled_batches[0],
        )
        return shuffled_batches

198
199
200
201
202
203
204
205
    def __getitem__(self, item):
        raise NotImplementedError("You must implement this")

    def collate_fn(self, batch):
        raise NotImplementedError("You must implement this")


class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
206
    def __getitem__(self, index) -> Dict[str, torch.Tensor]:
207
        """Call tokenizer on src and tgt_lines"""
208
209
210
211
212
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
213
214
        source_inputs = self.encode_line(self.tokenizer, source_line, self.max_source_length)
        target_inputs = self.encode_line(self.tokenizer, tgt_line, self.max_target_length)
215
216
217
218
219
220
221

        source_ids = source_inputs["input_ids"].squeeze()
        target_ids = target_inputs["input_ids"].squeeze()
        src_mask = source_inputs["attention_mask"].squeeze()
        return {
            "input_ids": source_ids,
            "attention_mask": src_mask,
222
            "labels": target_ids,
223
        }
224

225
226
227
228
229
230
231
232
233
234
235
    def encode_line(self, tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"):
        """Only used by LegacyDataset"""
        return tokenizer(
            [line],
            max_length=max_length,
            padding="max_length" if pad_to_max_length else None,
            truncation=True,
            return_tensors=return_tensors,
            **self.dataset_kwargs,
        )

236
    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
237
238
        input_ids = torch.stack([x["input_ids"] for x in batch])
        masks = torch.stack([x["attention_mask"] for x in batch])
239
        target_ids = torch.stack([x["labels"] for x in batch])
240
        pad_token_id = self.pad_token_id
241
242
        y = trim_batch(target_ids, pad_token_id)
        source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
243
244
245
        batch = {
            "input_ids": source_ids,
            "attention_mask": source_mask,
246
            "labels": y,
247
        }
248
249
        return batch

250

251
class Seq2SeqDataset(AbstractSeq2SeqDataset):
252
    """A dataset that calls prepare_seq2seq_batch."""
253

254
255
256
257
258
259
    def __getitem__(self, index) -> Dict[str, str]:
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
260
        return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1}
261
262

    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
263
        """Call prepare_seq2seq_batch."""
264
        batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch(
265
266
267
            [x["src_texts"] for x in batch],
            tgt_texts=[x["tgt_texts"] for x in batch],
            max_length=self.max_source_length,
268
            max_target_length=self.max_target_length,
269
            return_tensors="pt",
270
            **self.dataset_kwargs,
271
272
273
        ).data
        batch_encoding["ids"] = torch.tensor([x["id"] for x in batch])
        return batch_encoding
274
275


276
277
278
279
280
281
282
283
284
class Seq2SeqDataCollator:
    def __init__(self, tokenizer, data_args, tpu_num_cores=None):
        self.tokenizer = tokenizer
        self.pad_token_id = tokenizer.pad_token_id
        assert (
            self.pad_token_id is not None
        ), f"pad_token_id is not defined for ({self.tokenizer.__class__.__name__}), it must be defined."
        self.data_args = data_args
        self.tpu_num_cores = tpu_num_cores
Sam Shleifer's avatar
Sam Shleifer committed
285
        self.dataset_kwargs = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {}
286
287
288
289
        if data_args.src_lang is not None:
            self.dataset_kwargs["src_lang"] = data_args.src_lang
        if data_args.tgt_lang is not None:
            self.dataset_kwargs["tgt_lang"] = data_args.tgt_lang
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

    def __call__(self, batch) -> Dict[str, torch.Tensor]:
        if hasattr(self.tokenizer, "prepare_seq2seq_batch"):
            batch = self._encode(batch)
            input_ids, attention_mask, labels = (
                batch["input_ids"],
                batch["attention_mask"],
                batch["labels"],
            )
        else:
            input_ids = torch.stack([x["input_ids"] for x in batch])
            attention_mask = torch.stack([x["attention_mask"] for x in batch])
            labels = torch.stack([x["labels"] for x in batch])

            labels = trim_batch(labels, self.pad_token_id)
            input_ids, attention_mask = trim_batch(input_ids, self.pad_token_id, attention_mask=attention_mask)

        batch = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "labels": labels,
        }
        return batch

    def _shift_right_t5(self, input_ids):
        # shift inputs to the right
        shifted_input_ids = input_ids.new_zeros(input_ids.shape)
        shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
        shifted_input_ids[..., 0] = self.pad_token_id
        return shifted_input_ids

    def _encode(self, batch) -> Dict[str, torch.Tensor]:
        batch_encoding = self.tokenizer.prepare_seq2seq_batch(
            [x["src_texts"] for x in batch],
            tgt_texts=[x["tgt_texts"] for x in batch],
            max_length=self.data_args.max_source_length,
326
            max_target_length=self.data_args.max_target_length,
327
328
            padding="max_length" if self.tpu_num_cores is not None else "longest",  # TPU hack
            return_tensors="pt",
329
            **self.dataset_kwargs,
330
331
332
333
        )
        return batch_encoding.data


334
335
336
class SortishSampler(Sampler):
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

337
338
    def __init__(self, data, batch_size, shuffle=True):
        self.data, self.bs, self.shuffle = data, batch_size, shuffle
339
340
341
342
343

    def __len__(self) -> int:
        return len(self.data)

    def __iter__(self):
344
        return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle))
345
346


347
def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array:
348
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."
349
350
    if not shuffle:
        return np.argsort(np.array(data) * -1)
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

    def key_fn(i):
        return data[i]

    idxs = np.random.permutation(len(data))
    sz = bs * 50
    ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
    sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx])
    sz = bs
    ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
    max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx])  # find the chunk with the largest key,
    ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0]  # then make sure it goes first.
    sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
    sort_idx = np.concatenate((ck_idx[0], sort_idx))
    return sort_idx


class DistributedSortishSampler(Sampler):
    """Copied from torch DistributedSampler"""

371
    def __init__(self, dataset, batch_size, num_replicas=None, rank=None, add_extra_examples=True, shuffle=True):
372
373
374
375
376
377
378
379
380
381
382
383
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
384
385
386
387
388
389
        if add_extra_examples:
            self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
            self.total_size = self.num_samples * self.num_replicas
        else:
            self.total_size = len(dataset)
            self.num_samples = len(self.available_indices)
390
        self.batch_size = batch_size
391
        self.add_extra_examples = add_extra_examples
392
        self.shuffle = shuffle
393
394
395
396
397

    def __iter__(self) -> Iterable:
        g = torch.Generator()
        g.manual_seed(self.epoch)

398
        sortish_data = [self.dataset.src_lens[i] for i in self.available_indices]
399
        sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size, shuffle=self.shuffle)
400
        indices = [self.available_indices[i] for i in sortish_indices]
401
402
403
        assert len(indices) == self.num_samples
        return iter(indices)

404
405
    @cached_property
    def available_indices(self) -> np.array:
406
407
408
409
410
411
412
413
414
415
416
417
418
        indices = list(range(len(self.dataset)))
        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size
        # subsample
        available_indices = indices[self.rank : self.total_size : self.num_replicas]
        return available_indices

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch
419
420


421
422
423
logger = getLogger(__name__)


424
def use_task_specific_params(model, task):
425
    """Update config with summarization specific params."""
426
    task_specific_params = model.config.task_specific_params
427

428
    if task_specific_params is not None:
429
        pars = task_specific_params.get(task, {})
Stas Bekman's avatar
Stas Bekman committed
430
431
        logger.info(f"setting model.config to task specific params for {task}:\n {pars}")
        logger.info("note: command line args may override some of these")
432
        model.config.update(pars)
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450


def pickle_load(path):
    """pickle.load(path)"""
    with open(path, "rb") as f:
        return pickle.load(f)


def pickle_save(obj, path):
    """pickle.dump(obj, path)"""
    with open(path, "wb") as f:
        return pickle.dump(obj, f)


def flatten_list(summary_ids: List[List]):
    return [x for x in itertools.chain.from_iterable(summary_ids)]


451
452
def save_git_info(folder_path: str) -> None:
    """Save git information to output_dir/git_log.json"""
453
    repo_infos = get_git_info()
454
    save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
455

456

457
def save_json(content, path, indent=4, **json_dump_kwargs):
458
    with open(path, "w") as f:
459
        json.dump(content, f, indent=indent, sort_keys=True, **json_dump_kwargs)
460
461
462
463
464


def load_json(path):
    with open(path) as f:
        return json.load(f)
465
466
467


def get_git_info():
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    try:
        repo = git.Repo(search_parent_directories=True)
        repo_infos = {
            "repo_id": str(repo),
            "repo_sha": str(repo.head.object.hexsha),
            "repo_branch": str(repo.active_branch),
            "hostname": str(socket.gethostname()),
        }
        return repo_infos
    except TypeError:
        return {
            "repo_id": None,
            "repo_sha": None,
            "repo_branch": None,
            "hostname": None,
        }
484
485


486
ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
487
488


489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
def extract_rouge_mid_statistics(dct):
    new_dict = {}
    for k1, v1 in dct.items():
        mid = v1.mid
        new_dict[k1] = {stat: round(getattr(mid, stat), 4) for stat in ["precision", "recall", "fmeasure"]}
    return new_dict


def calculate_rouge(
    pred_lns: List[str],
    tgt_lns: List[str],
    use_stemmer=True,
    rouge_keys=ROUGE_KEYS,
    return_precision_and_recall=False,
    bootstrap_aggregation=True,
    newline_sep=True,
) -> Dict:
    """Calculate rouge using rouge_scorer package.
507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    Args:
        pred_lns: list of summaries generated by model
        tgt_lns: list of groundtruth summaries (e.g. contents of val.target)
        use_stemmer:  Bool indicating whether Porter stemmer should be used to
        strip word suffixes to improve matching.
        rouge_keys:  which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum
        return_precision_and_recall: (False) whether to also return precision and recall.
        bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False
            this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]``
        newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL
        on multi sentence summaries (CNN/DM dataset).

    Returns:
         Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys

    """
    scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer)
    aggregator = scoring.BootstrapAggregator()
    for pred, tgt in zip(tgt_lns, pred_lns):
        # rougeLsum expects "\n" separated sentences within a summary
        if newline_sep:
            pred = add_newline_to_end_of_each_sentence(pred)
            tgt = add_newline_to_end_of_each_sentence(tgt)
        scores = scorer.score(pred, tgt)
532
533
        aggregator.add_scores(scores)

534
535
536
537
538
539
540
541
542
    if bootstrap_aggregation:
        result = aggregator.aggregate()
        if return_precision_and_recall:
            return extract_rouge_mid_statistics(result)  # here we return dict
        else:
            return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()}

    else:
        return aggregator._scores  # here we return defaultdict(list)
543
544


545
546
547
# Utilities for freezing parameters and checking whether they are frozen


548
def freeze_params(model: nn.Module):
549
    """Set requires_grad=False for each of model.parameters()"""
550
551
552
553
    for par in model.parameters():
        par.requires_grad = False


554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
def freeze_embeds(model):
    """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
    model_type = model.config.model_type

    if model_type == "t5":
        freeze_params(model.shared)
        for d in [model.encoder, model.decoder]:
            freeze_params(d.embed_tokens)
    elif model_type == "fsmt":
        for d in [model.model.encoder, model.model.decoder]:
            freeze_params(d.embed_positions)
            freeze_params(d.embed_tokens)
    else:
        freeze_params(model.model.shared)
        for d in [model.model.encoder, model.model.decoder]:
            freeze_params(d.embed_positions)
            freeze_params(d.embed_tokens)


573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
def grad_status(model: nn.Module) -> Iterable:
    return (par.requires_grad for par in model.parameters())


def any_requires_grad(model: nn.Module) -> bool:
    return any(grad_status(model))


def assert_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    n_require_grad = sum(lmap(int, model_grads))
    npars = len(model_grads)
    assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"


def assert_not_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    npars = len(model_grads)
    assert any(model_grads), f"none of {npars} weights require grad"
592
593


594
595
596
597
598
def parse_numeric_n_bool_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float, bool]]:
    """
    Parse an argv list of unspecified command line args to a dict.
    Assumes all values are either numeric or boolean in the form of true/false.
    """
599
600
601
602
603
604
    result = {}
    assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}"
    num_pairs = len(unparsed_args) // 2
    for pair_num in range(num_pairs):
        i = 2 * pair_num
        assert unparsed_args[i].startswith("--")
605
606
607
608
609
610
611
612
613
        if unparsed_args[i + 1].lower() == "true":
            value = True
        elif unparsed_args[i + 1].lower() == "false":
            value = False
        else:
            try:
                value = int(unparsed_args[i + 1])
            except ValueError:
                value = float(unparsed_args[i + 1])  # this can raise another informative ValueError
614
615
616

        result[unparsed_args[i][2:]] = value
    return result
617
618
619
620
621
622
623


def write_txt_file(ordered_tgt, path):
    f = Path(path).open("w")
    for ln in ordered_tgt:
        f.write(ln + "\n")
        f.flush()
624
625
626
627
628
629


def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in range(0, len(lst), n):
        yield lst[i : i + n]
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650


def check_output_dir(args, expected_items=0):
    """
    Checks whether to bail out if output_dir already exists and has more than expected_items in it

    `args`: needs to have the following attributes of `args`:
      - output_dir
      - do_train
      - overwrite_output_dir

    `expected_items`: normally 0 (default) - i.e. empty dir, but in some cases a few files are expected (e.g. recovery from OOM)
    """
    if (
        os.path.exists(args.output_dir)
        and len(os.listdir(args.output_dir)) > expected_items
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({args.output_dir}) already exists and "
651
            f"has {len(os.listdir(args.output_dir))} items in it (expected {expected_items} items). "
652
653
            "Use --overwrite_output_dir to overcome."
        )