utils.py 18 KB
Newer Older
1
2
import itertools
import json
3
import linecache
4
import math
5
import os
6
import pickle
7
import socket
8
from logging import getLogger
9
from pathlib import Path
10
from typing import Callable, Dict, Iterable, List, Union
11

12
13
import git
import numpy as np
14
import torch
15
import torch.distributed as dist
16
from rouge_score import rouge_scorer, scoring
17
from sacrebleu import corpus_bleu
18
19
from torch import nn
from torch.utils.data import Dataset, Sampler
20

21
from sentence_splitter import add_newline_to_end_of_each_sentence
22
from transformers import BartTokenizer
23
from transformers.file_utils import cached_property
24

25

26
27
28
29
30
31
32
33
try:
    from fairseq.data.data_utils import batch_by_size

    FAIRSEQ_AVAILABLE = True
except (ImportError, ModuleNotFoundError):
    FAIRSEQ_AVAILABLE = False


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
    """From fairseq"""
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target)
    smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
    if ignore_index is not None:
        pad_mask = target.eq(ignore_index)
        nll_loss.masked_fill_(pad_mask, 0.0)
        smooth_loss.masked_fill_(pad_mask, 0.0)
    else:
        nll_loss = nll_loss.squeeze(-1)
        smooth_loss = smooth_loss.squeeze(-1)

    nll_loss = nll_loss.sum()  # mean()? Scared to break other math.
    smooth_loss = smooth_loss.sum()
    eps_i = epsilon / lprobs.size(-1)
    loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
52
    return loss, nll_loss
53
54


55
def encode_line(tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"):
56
    """Only used by LegacyDataset"""
57
    extra_kw = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {}
58
59
60
61
62
63
64
65
    return tokenizer(
        [line],
        max_length=max_length,
        padding="max_length" if pad_to_max_length else None,
        truncation=True,
        return_tensors=return_tensors,
        **extra_kw,
    )
66
67


68
69
def lmap(f: Callable, x: Iterable) -> List:
    """list(map(f, x))"""
70
71
72
    return list(map(f, x))


73
def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict:
74
    """Uses sacrebleu's corpus_bleu implementation."""
75
    return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)}
76
77


78
def trim_batch(
Lysandre's avatar
Lysandre committed
79
80
81
    input_ids,
    pad_token_id,
    attention_mask=None,
82
83
84
85
86
87
88
89
90
):
    """Remove columns that are populated exclusively by pad_token_id"""
    keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
    if attention_mask is None:
        return input_ids[:, keep_column_mask]
    else:
        return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])


91
class AbstractSeq2SeqDataset(Dataset):
92
93
94
    def __init__(
        self,
        tokenizer,
95
        data_dir,
96
97
        max_source_length,
        max_target_length,
98
        type_path="train",
99
        n_obs=None,
100
101
        src_lang=None,
        tgt_lang=None,
102
        prefix="",
103
104
    ):
        super().__init__()
105
106
        self.src_file = Path(data_dir).joinpath(type_path + ".source")
        self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
107
108
109
110
111
112
113
        self.len_file = Path(data_dir).joinpath(type_path + ".len")
        if os.path.exists(self.len_file):
            self.src_lens = pickle_load(self.len_file)
            self.used_char_len = False
        else:
            self.src_lens = self.get_char_lens(self.src_file)
            self.used_char_len = True
114
115
116
117
        self.max_source_length = max_source_length
        self.max_target_length = max_target_length
        assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
        self.tokenizer = tokenizer
118
119
        self.prefix = prefix if prefix is not None else ""

120
        if n_obs is not None:
121
122
123
124
            self.src_lens = self.src_lens[:n_obs]
        self.pad_token_id = self.tokenizer.pad_token_id
        self.src_lang = src_lang
        self.tgt_lang = tgt_lang
125
        self.add_prefix_space = isinstance(self.tokenizer, BartTokenizer)
126
127

    def __len__(self):
128
129
        return len(self.src_lens)

130
131
132
133
    @staticmethod
    def get_char_lens(data_file):
        return [len(x) for x in Path(data_file).open().readlines()]

134
135
136
137
138
    @cached_property
    def tgt_lens(self):
        """Length in characters of target documents"""
        return self.get_char_lens(self.tgt_file)

139
    def make_sortish_sampler(self, batch_size, distributed=False, shuffle=True, **kwargs):
140
        if distributed:
141
            return DistributedSortishSampler(self, batch_size, shuffle=shuffle, **kwargs)
142
        else:
143
            return SortishSampler(self.src_lens, batch_size, shuffle=shuffle)
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def make_dynamic_sampler(self, max_tokens_per_batch=1024, **kwargs):
        assert FAIRSEQ_AVAILABLE, "Dynamic batch size requires `pip install fairseq`"
        assert not self.used_char_len, "You must call  python make_len_file.py before calling make_dynamic_sampler"
        sorted_indices = list(self.make_sortish_sampler(1024, shuffle=False))

        def num_tokens_in_example(i):
            return min(self.src_lens[i], self.max_target_length)

        # call fairseq cython function
        batch_sampler: List[List[int]] = batch_by_size(
            sorted_indices,
            num_tokens_fn=num_tokens_in_example,
            max_tokens=max_tokens_per_batch,
            required_batch_size_multiple=64,
        )
        shuffled_batches = [batch_sampler[i] for i in np.random.permutation(range(len(batch_sampler)))]
        # move the largest batch to the front to OOM quickly (uses an approximation for padding)
        approximate_toks_per_batch = [max(self.src_lens[i] for i in batch) * len(batch) for batch in shuffled_batches]
        largest_batch_idx = np.argmax(approximate_toks_per_batch)
        shuffled_batches[0], shuffled_batches[largest_batch_idx] = (
            shuffled_batches[largest_batch_idx],
            shuffled_batches[0],
        )
        return shuffled_batches

170
171
172
173
174
175
176
177
    def __getitem__(self, item):
        raise NotImplementedError("You must implement this")

    def collate_fn(self, batch):
        raise NotImplementedError("You must implement this")


class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
178
    def __getitem__(self, index) -> Dict[str, torch.Tensor]:
179
        """Call tokenizer on src and tgt_lines"""
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
        source_inputs = encode_line(self.tokenizer, source_line, self.max_source_length)
        target_inputs = encode_line(self.tokenizer, tgt_line, self.max_target_length)

        source_ids = source_inputs["input_ids"].squeeze()
        target_ids = target_inputs["input_ids"].squeeze()
        src_mask = source_inputs["attention_mask"].squeeze()
        return {
            "input_ids": source_ids,
            "attention_mask": src_mask,
194
            "labels": target_ids,
195
        }
196

197
    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
198
199
        input_ids = torch.stack([x["input_ids"] for x in batch])
        masks = torch.stack([x["attention_mask"] for x in batch])
200
        target_ids = torch.stack([x["labels"] for x in batch])
201
        pad_token_id = self.pad_token_id
202
203
        y = trim_batch(target_ids, pad_token_id)
        source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
204
205
206
        batch = {
            "input_ids": source_ids,
            "attention_mask": source_mask,
207
            "labels": y,
208
        }
209
210
        return batch

211

212
class Seq2SeqDataset(AbstractSeq2SeqDataset):
213
    """A dataset that calls prepare_seq2seq_batch."""
214

215
216
217
218
219
220
    def __getitem__(self, index) -> Dict[str, str]:
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
221
        return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1}
222
223

    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
224
        """Call prepare_seq2seq_batch."""
225
        batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch(
226
227
228
229
230
            [x["src_texts"] for x in batch],
            src_lang=self.src_lang,
            tgt_texts=[x["tgt_texts"] for x in batch],
            tgt_lang=self.tgt_lang,
            max_length=self.max_source_length,
231
            max_target_length=self.max_target_length,
232
233
            return_tensors="pt",
            add_prefix_space=self.add_prefix_space,
234
235
236
        ).data
        batch_encoding["ids"] = torch.tensor([x["id"] for x in batch])
        return batch_encoding
237
238
239
240
241


class SortishSampler(Sampler):
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

242
243
    def __init__(self, data, batch_size, shuffle=True):
        self.data, self.bs, self.shuffle = data, batch_size, shuffle
244
245
246
247
248

    def __len__(self) -> int:
        return len(self.data)

    def __iter__(self):
249
        return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle))
250
251


252
def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array:
253
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."
254
255
    if not shuffle:
        return np.argsort(np.array(data) * -1)
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

    def key_fn(i):
        return data[i]

    idxs = np.random.permutation(len(data))
    sz = bs * 50
    ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
    sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx])
    sz = bs
    ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
    max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx])  # find the chunk with the largest key,
    ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0]  # then make sure it goes first.
    sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
    sort_idx = np.concatenate((ck_idx[0], sort_idx))
    return sort_idx


class DistributedSortishSampler(Sampler):
    """Copied from torch DistributedSampler"""

276
    def __init__(self, dataset, batch_size, num_replicas=None, rank=None, add_extra_examples=True, shuffle=True):
277
278
279
280
281
282
283
284
285
286
287
288
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
289
290
291
292
293
294
        if add_extra_examples:
            self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
            self.total_size = self.num_samples * self.num_replicas
        else:
            self.total_size = len(dataset)
            self.num_samples = len(self.available_indices)
295
        self.batch_size = batch_size
296
        self.add_extra_examples = add_extra_examples
297
        self.shuffle = shuffle
298
299
300
301
302

    def __iter__(self) -> Iterable:
        g = torch.Generator()
        g.manual_seed(self.epoch)

303
        sortish_data = [self.dataset.src_lens[i] for i in self.available_indices]
304
        sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size, shuffle=self.shuffle)
305
        indices = [self.available_indices[i] for i in sortish_indices]
306
307
308
        assert len(indices) == self.num_samples
        return iter(indices)

309
310
    @cached_property
    def available_indices(self) -> np.array:
311
312
313
314
315
316
317
318
319
320
321
322
323
        indices = list(range(len(self.dataset)))
        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size
        # subsample
        available_indices = indices[self.rank : self.total_size : self.num_replicas]
        return available_indices

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch
324
325


326
327
328
logger = getLogger(__name__)


329
def use_task_specific_params(model, task):
330
    """Update config with summarization specific params."""
331
    task_specific_params = model.config.task_specific_params
332

333
    if task_specific_params is not None:
334
335
336
        pars = task_specific_params.get(task, {})
        logger.info(f"using task specific params for {task}: {pars}")
        model.config.update(pars)
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354


def pickle_load(path):
    """pickle.load(path)"""
    with open(path, "rb") as f:
        return pickle.load(f)


def pickle_save(obj, path):
    """pickle.dump(obj, path)"""
    with open(path, "wb") as f:
        return pickle.dump(obj, f)


def flatten_list(summary_ids: List[List]):
    return [x for x in itertools.chain.from_iterable(summary_ids)]


355
356
def save_git_info(folder_path: str) -> None:
    """Save git information to output_dir/git_log.json"""
357
    repo_infos = get_git_info()
358
    save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
359

360

361
def save_json(content, path, indent=4, **json_dump_kwargs):
362
    with open(path, "w") as f:
363
        json.dump(content, f, indent=indent, **json_dump_kwargs)
364
365
366
367
368


def load_json(path):
    with open(path) as f:
        return json.load(f)
369
370
371
372
373
374
375
376


def get_git_info():
    repo = git.Repo(search_parent_directories=True)
    repo_infos = {
        "repo_id": str(repo),
        "repo_sha": str(repo.head.object.hexsha),
        "repo_branch": str(repo.active_branch),
377
        "hostname": str(socket.gethostname()),
378
379
380
381
    }
    return repo_infos


382
ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
383
384


385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
def extract_rouge_mid_statistics(dct):
    new_dict = {}
    for k1, v1 in dct.items():
        mid = v1.mid
        new_dict[k1] = {stat: round(getattr(mid, stat), 4) for stat in ["precision", "recall", "fmeasure"]}
    return new_dict


def calculate_rouge(
    pred_lns: List[str],
    tgt_lns: List[str],
    use_stemmer=True,
    rouge_keys=ROUGE_KEYS,
    return_precision_and_recall=False,
    bootstrap_aggregation=True,
    newline_sep=True,
) -> Dict:
    """Calculate rouge using rouge_scorer package.
403

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    Args:
        pred_lns: list of summaries generated by model
        tgt_lns: list of groundtruth summaries (e.g. contents of val.target)
        use_stemmer:  Bool indicating whether Porter stemmer should be used to
        strip word suffixes to improve matching.
        rouge_keys:  which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum
        return_precision_and_recall: (False) whether to also return precision and recall.
        bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False
            this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]``
        newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL
        on multi sentence summaries (CNN/DM dataset).

    Returns:
         Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys

    """
    scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer)
    aggregator = scoring.BootstrapAggregator()
    for pred, tgt in zip(tgt_lns, pred_lns):
        # rougeLsum expects "\n" separated sentences within a summary
        if newline_sep:
            pred = add_newline_to_end_of_each_sentence(pred)
            tgt = add_newline_to_end_of_each_sentence(tgt)
        scores = scorer.score(pred, tgt)
428
429
        aggregator.add_scores(scores)

430
431
432
433
434
435
436
437
438
    if bootstrap_aggregation:
        result = aggregator.aggregate()
        if return_precision_and_recall:
            return extract_rouge_mid_statistics(result)  # here we return dict
        else:
            return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()}

    else:
        return aggregator._scores  # here we return defaultdict(list)
439
440


441
442
443
# Utilities for freezing parameters and checking whether they are frozen


444
def freeze_params(model: nn.Module):
445
    """Set requires_grad=False for each of model.parameters()"""
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    for par in model.parameters():
        par.requires_grad = False


def grad_status(model: nn.Module) -> Iterable:
    return (par.requires_grad for par in model.parameters())


def any_requires_grad(model: nn.Module) -> bool:
    return any(grad_status(model))


def assert_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    n_require_grad = sum(lmap(int, model_grads))
    npars = len(model_grads)
    assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"


def assert_not_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    npars = len(model_grads)
    assert any(model_grads), f"none of {npars} weights require grad"
469
470


471
472
473
474
475
def parse_numeric_n_bool_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float, bool]]:
    """
    Parse an argv list of unspecified command line args to a dict.
    Assumes all values are either numeric or boolean in the form of true/false.
    """
476
477
478
479
480
481
    result = {}
    assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}"
    num_pairs = len(unparsed_args) // 2
    for pair_num in range(num_pairs):
        i = 2 * pair_num
        assert unparsed_args[i].startswith("--")
482
483
484
485
486
487
488
489
490
        if unparsed_args[i + 1].lower() == "true":
            value = True
        elif unparsed_args[i + 1].lower() == "false":
            value = False
        else:
            try:
                value = int(unparsed_args[i + 1])
            except ValueError:
                value = float(unparsed_args[i + 1])  # this can raise another informative ValueError
491
492
493

        result[unparsed_args[i][2:]] = value
    return result
494
495
496
497
498
499
500


def write_txt_file(ordered_tgt, path):
    f = Path(path).open("w")
    for ln in ordered_tgt:
        f.write(ln + "\n")
        f.flush()
501
502
503
504
505
506


def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in range(0, len(lst), n):
        yield lst[i : i + n]