"vscode:/vscode.git/clone" did not exist on "f3065abdb8805f5beaed9ff1e92ce874e655f5c9"
utils.py 9.99 KB
Newer Older
1
2
import itertools
import json
3
import linecache
4
import os
5
import pickle
6
import warnings
7
from logging import getLogger
8
from pathlib import Path
9
from typing import Callable, Dict, Iterable, List
10

11
12
import git
import numpy as np
13
import torch
14
from rouge_score import rouge_scorer, scoring
15
from sacrebleu import corpus_bleu
16
17
from torch import nn
from torch.utils.data import Dataset, Sampler
18

19
20
from transformers import BartTokenizer

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
    """From fairseq"""
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target)
    smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
    if ignore_index is not None:
        pad_mask = target.eq(ignore_index)
        nll_loss.masked_fill_(pad_mask, 0.0)
        smooth_loss.masked_fill_(pad_mask, 0.0)
    else:
        nll_loss = nll_loss.squeeze(-1)
        smooth_loss = smooth_loss.squeeze(-1)

    nll_loss = nll_loss.sum()  # mean()? Scared to break other math.
    smooth_loss = smooth_loss.sum()
    eps_i = epsilon / lprobs.size(-1)
    loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
40
    return loss, nll_loss
41
42


43
def encode_line(tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"):
44
    extra_kw = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {}
45
46
47
48
49
50
51
52
    return tokenizer(
        [line],
        max_length=max_length,
        padding="max_length" if pad_to_max_length else None,
        truncation=True,
        return_tensors=return_tensors,
        **extra_kw,
    )
53
54


55
56
def lmap(f: Callable, x: Iterable) -> List:
    """list(map(f, x))"""
57
58
59
    return list(map(f, x))


60
def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict:
61
    """Uses sacrebleu's corpus_bleu implementation."""
62
    return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)}
63
64


65
66
67
68
69
70
71
72
73
74
75
def trim_batch(
    input_ids, pad_token_id, attention_mask=None,
):
    """Remove columns that are populated exclusively by pad_token_id"""
    keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
    if attention_mask is None:
        return input_ids[:, keep_column_mask]
    else:
        return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])


76
class Seq2SeqDataset(Dataset):
77
78
79
    def __init__(
        self,
        tokenizer,
80
        data_dir,
81
82
        max_source_length,
        max_target_length,
83
        type_path="train",
84
        n_obs=None,
85
86
        src_lang=None,
        tgt_lang=None,
87
        prefix="",
88
89
    ):
        super().__init__()
90
91
92
93
94
95
96
97
        self.src_file = Path(data_dir).joinpath(type_path + ".source")
        self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
        self.src_lens = self.get_char_lens(self.src_file)
        self.max_source_length = max_source_length
        self.max_target_length = max_target_length
        assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
        self.tokenizer = tokenizer
        self.prefix = prefix
98
        if n_obs is not None:
99
100
101
102
            self.src_lens = self.src_lens[:n_obs]
        self.pad_token_id = self.tokenizer.pad_token_id
        self.src_lang = src_lang
        self.tgt_lang = tgt_lang
103
104

    def __len__(self):
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        return len(self.src_lens)

    def __getitem__(self, index) -> Dict[str, torch.Tensor]:
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
        source_inputs = encode_line(self.tokenizer, source_line, self.max_source_length)
        target_inputs = encode_line(self.tokenizer, tgt_line, self.max_target_length)

        source_ids = source_inputs["input_ids"].squeeze()
        target_ids = target_inputs["input_ids"].squeeze()
        src_mask = source_inputs["attention_mask"].squeeze()
        return {
            "input_ids": source_ids,
            "attention_mask": src_mask,
            "decoder_input_ids": target_ids,
        }
124

125
126
127
    @staticmethod
    def get_char_lens(data_file):
        return [len(x) for x in Path(data_file).open().readlines()]
128

129
    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
130
131
132
133
        input_ids = torch.stack([x["input_ids"] for x in batch])
        masks = torch.stack([x["attention_mask"] for x in batch])
        target_ids = torch.stack([x["decoder_input_ids"] for x in batch])
        pad_token_id = self.pad_token_id
134
135
        y = trim_batch(target_ids, pad_token_id)
        source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
136
137
138
139
140
        batch = {
            "input_ids": source_ids,
            "attention_mask": source_mask,
            "decoder_input_ids": y,
        }
141
142
143
        return batch

    def make_sortish_sampler(self, batch_size):
144
145
146
        return SortishSampler(self.src_lens, batch_size)


147
class TranslationDataset(Seq2SeqDataset):
148
    """A dataset that calls prepare_seq2seq_batch."""
149

150
151
152
153
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        if self.max_source_length != self.max_target_length:
            warnings.warn(
154
155
                f"Mbart is using sequence lengths {self.max_source_length}, {self.max_target_length}. "
                f"Imbalanced sequence lengths may be undesired for translation tasks"
156
157
158
159
160
161
162
163
164
            )

    def __getitem__(self, index) -> Dict[str, str]:
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
        return {
165
166
            "tgt_texts": tgt_line,
            "src_texts": source_line,
167
168
169
        }

    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
170
        batch_encoding = self.tokenizer.prepare_seq2seq_batch(
171
172
173
174
175
            [x["src_texts"] for x in batch],
            src_lang=self.src_lang,
            tgt_texts=[x["tgt_texts"] for x in batch],
            tgt_lang=self.tgt_lang,
            max_length=self.max_source_length,
176
            max_target_length=self.max_target_length,
177
178
        )
        return batch_encoding.data
179
180
181
182
183
184
185
186
187


class SortishSampler(Sampler):
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

    def __init__(self, data, batch_size):
        self.data, self.bs = data, batch_size

    def key(self, i):
188
        return self.data[i]
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

    def __len__(self) -> int:
        return len(self.data)

    def __iter__(self):
        idxs = np.random.permutation(len(self.data))
        sz = self.bs * 50
        ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
        sort_idx = np.concatenate([sorted(s, key=self.key, reverse=True) for s in ck_idx])
        sz = self.bs
        ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
        max_ck = np.argmax([self.key(ck[0]) for ck in ck_idx])  # find the chunk with the largest key,
        ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0]  # then make sure it goes first.
        sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
        sort_idx = np.concatenate((ck_idx[0], sort_idx))
        return iter(sort_idx)


207
208
209
logger = getLogger(__name__)


210
def use_task_specific_params(model, task):
211
    """Update config with summarization specific params."""
212
    task_specific_params = model.config.task_specific_params
213

214
    if task_specific_params is not None:
215
216
217
        pars = task_specific_params.get(task, {})
        logger.info(f"using task specific params for {task}: {pars}")
        model.config.update(pars)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235


def pickle_load(path):
    """pickle.load(path)"""
    with open(path, "rb") as f:
        return pickle.load(f)


def pickle_save(obj, path):
    """pickle.dump(obj, path)"""
    with open(path, "wb") as f:
        return pickle.dump(obj, f)


def flatten_list(summary_ids: List[List]):
    return [x for x in itertools.chain.from_iterable(summary_ids)]


236
237
def save_git_info(folder_path: str) -> None:
    """Save git information to output_dir/git_log.json"""
238
    repo_infos = get_git_info()
239
    save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
240

241
242
243
244
245
246
247
248
249

def save_json(content, path):
    with open(path, "w") as f:
        json.dump(content, f, indent=4)


def load_json(path):
    with open(path) as f:
        return json.load(f)
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264


def get_git_info():
    repo = git.Repo(search_parent_directories=True)
    repo_infos = {
        "repo_id": str(repo),
        "repo_sha": str(repo.head.object.hexsha),
        "repo_branch": str(repo.active_branch),
    }
    return repo_infos


ROUGE_KEYS = ["rouge1", "rouge2", "rougeL"]


265
266
def calculate_rouge(output_lns: List[str], reference_lns: List[str], use_stemmer=True) -> Dict:
    scorer = rouge_scorer.RougeScorer(ROUGE_KEYS, use_stemmer=use_stemmer)
267
268
269
270
271
272
273
    aggregator = scoring.BootstrapAggregator()

    for reference_ln, output_ln in zip(reference_lns, output_lns):
        scores = scorer.score(reference_ln, output_ln)
        aggregator.add_scores(scores)

    result = aggregator.aggregate()
274
    return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()}
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300


def freeze_params(model: nn.Module):
    for par in model.parameters():
        par.requires_grad = False


def grad_status(model: nn.Module) -> Iterable:
    return (par.requires_grad for par in model.parameters())


def any_requires_grad(model: nn.Module) -> bool:
    return any(grad_status(model))


def assert_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    n_require_grad = sum(lmap(int, model_grads))
    npars = len(model_grads)
    assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"


def assert_not_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    npars = len(model_grads)
    assert any(model_grads), f"none of {npars} weights require grad"