utils.py 13.3 KB
Newer Older
1
2
import itertools
import json
3
import linecache
4
import math
5
import os
6
import pickle
7
from logging import getLogger
8
from pathlib import Path
9
from typing import Callable, Dict, Iterable, List, Union
10

11
12
import git
import numpy as np
13
import torch
14
import torch.distributed as dist
15
from rouge_score import rouge_scorer, scoring
16
from sacrebleu import corpus_bleu
17
18
from torch import nn
from torch.utils.data import Dataset, Sampler
19

20
21
from transformers import BartTokenizer

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
    """From fairseq"""
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target)
    smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
    if ignore_index is not None:
        pad_mask = target.eq(ignore_index)
        nll_loss.masked_fill_(pad_mask, 0.0)
        smooth_loss.masked_fill_(pad_mask, 0.0)
    else:
        nll_loss = nll_loss.squeeze(-1)
        smooth_loss = smooth_loss.squeeze(-1)

    nll_loss = nll_loss.sum()  # mean()? Scared to break other math.
    smooth_loss = smooth_loss.sum()
    eps_i = epsilon / lprobs.size(-1)
    loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
41
    return loss, nll_loss
42
43


44
def encode_line(tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"):
45
    """Only used by LegacyDataset"""
46
    extra_kw = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {}
47
48
49
50
51
52
53
54
    return tokenizer(
        [line],
        max_length=max_length,
        padding="max_length" if pad_to_max_length else None,
        truncation=True,
        return_tensors=return_tensors,
        **extra_kw,
    )
55
56


57
58
def lmap(f: Callable, x: Iterable) -> List:
    """list(map(f, x))"""
59
60
61
    return list(map(f, x))


62
def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict:
63
    """Uses sacrebleu's corpus_bleu implementation."""
64
    return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)}
65
66


67
def trim_batch(
Lysandre's avatar
Lysandre committed
68
69
70
    input_ids,
    pad_token_id,
    attention_mask=None,
71
72
73
74
75
76
77
78
79
):
    """Remove columns that are populated exclusively by pad_token_id"""
    keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
    if attention_mask is None:
        return input_ids[:, keep_column_mask]
    else:
        return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])


80
class AbstractSeq2SeqDataset(Dataset):
81
82
83
    def __init__(
        self,
        tokenizer,
84
        data_dir,
85
86
        max_source_length,
        max_target_length,
87
        type_path="train",
88
        n_obs=None,
89
90
        src_lang=None,
        tgt_lang=None,
91
        prefix="",
92
93
    ):
        super().__init__()
94
95
96
97
98
99
100
101
        self.src_file = Path(data_dir).joinpath(type_path + ".source")
        self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
        self.src_lens = self.get_char_lens(self.src_file)
        self.max_source_length = max_source_length
        self.max_target_length = max_target_length
        assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
        self.tokenizer = tokenizer
        self.prefix = prefix
102
        if n_obs is not None:
103
104
105
106
            self.src_lens = self.src_lens[:n_obs]
        self.pad_token_id = self.tokenizer.pad_token_id
        self.src_lang = src_lang
        self.tgt_lang = tgt_lang
107
        self.add_prefix_space = isinstance(self.tokenizer, BartTokenizer)
108
109

    def __len__(self):
110
111
        return len(self.src_lens)

112
113
114
115
    @staticmethod
    def get_char_lens(data_file):
        return [len(x) for x in Path(data_file).open().readlines()]

116
117
118
119
120
    def make_sortish_sampler(self, batch_size, distributed=False):
        if distributed:
            return DistributedSortishSampler(self, batch_size)
        else:
            return SortishSampler(self.src_lens, batch_size)
121
122
123
124
125
126
127
128
129

    def __getitem__(self, item):
        raise NotImplementedError("You must implement this")

    def collate_fn(self, batch):
        raise NotImplementedError("You must implement this")


class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
130
    def __getitem__(self, index) -> Dict[str, torch.Tensor]:
131
        """Call tokenizer on src and tgt_lines"""
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
        source_inputs = encode_line(self.tokenizer, source_line, self.max_source_length)
        target_inputs = encode_line(self.tokenizer, tgt_line, self.max_target_length)

        source_ids = source_inputs["input_ids"].squeeze()
        target_ids = target_inputs["input_ids"].squeeze()
        src_mask = source_inputs["attention_mask"].squeeze()
        return {
            "input_ids": source_ids,
            "attention_mask": src_mask,
146
            "labels": target_ids,
147
        }
148

149
    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
150
151
        input_ids = torch.stack([x["input_ids"] for x in batch])
        masks = torch.stack([x["attention_mask"] for x in batch])
152
        target_ids = torch.stack([x["labels"] for x in batch])
153
        pad_token_id = self.pad_token_id
154
155
        y = trim_batch(target_ids, pad_token_id)
        source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
156
157
158
        batch = {
            "input_ids": source_ids,
            "attention_mask": source_mask,
159
            "labels": y,
160
        }
161
162
        return batch

163

164
class Seq2SeqDataset(AbstractSeq2SeqDataset):
165
    """A dataset that calls prepare_seq2seq_batch."""
166

167
168
169
170
171
172
173
    def __getitem__(self, index) -> Dict[str, str]:
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
        return {
174
175
            "tgt_texts": tgt_line,
            "src_texts": source_line,
176
177
178
        }

    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
179
        """Call prepare_seq2seq_batch."""
180
        batch_encoding = self.tokenizer.prepare_seq2seq_batch(
181
182
183
184
185
            [x["src_texts"] for x in batch],
            src_lang=self.src_lang,
            tgt_texts=[x["tgt_texts"] for x in batch],
            tgt_lang=self.tgt_lang,
            max_length=self.max_source_length,
186
            max_target_length=self.max_target_length,
187
188
            return_tensors="pt",
            add_prefix_space=self.add_prefix_space,
189
190
        )
        return batch_encoding.data
191
192
193
194
195
196
197
198
199
200
201
202


class SortishSampler(Sampler):
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

    def __init__(self, data, batch_size):
        self.data, self.bs = data, batch_size

    def __len__(self) -> int:
        return len(self.data)

    def __iter__(self):
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        return iter(sortish_sampler_indices(self.data, self.bs))


def sortish_sampler_indices(data: List, bs: int) -> np.array:
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

    def key_fn(i):
        return data[i]

    idxs = np.random.permutation(len(data))
    sz = bs * 50
    ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
    sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx])
    sz = bs
    ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
    max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx])  # find the chunk with the largest key,
    ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0]  # then make sure it goes first.
    sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
    sort_idx = np.concatenate((ck_idx[0], sort_idx))
    return sort_idx


class DistributedSortishSampler(Sampler):
    """Copied from torch DistributedSampler"""

    def __init__(self, dataset, batch_size, num_replicas=None, rank=None):
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas
        self.batch_size = batch_size

    def __iter__(self) -> Iterable:
        g = torch.Generator()
        g.manual_seed(self.epoch)
        available_indices = self.get_indices_for_rank()  # indices[self.rank: self.total_size: self.num_replicas]

        sortish_data = [self.dataset.src_lens[i] for i in available_indices]
        sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size)
        indices = [available_indices[i] for i in sortish_indices]
        assert len(indices) == self.num_samples
        return iter(indices)

    def get_indices_for_rank(self) -> np.array:
        indices = list(range(len(self.dataset)))
        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size
        # subsample
        available_indices = indices[self.rank : self.total_size : self.num_replicas]
        return available_indices

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch
270
271


272
273
274
logger = getLogger(__name__)


275
def use_task_specific_params(model, task):
276
    """Update config with summarization specific params."""
277
    task_specific_params = model.config.task_specific_params
278

279
    if task_specific_params is not None:
280
281
282
        pars = task_specific_params.get(task, {})
        logger.info(f"using task specific params for {task}: {pars}")
        model.config.update(pars)
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300


def pickle_load(path):
    """pickle.load(path)"""
    with open(path, "rb") as f:
        return pickle.load(f)


def pickle_save(obj, path):
    """pickle.dump(obj, path)"""
    with open(path, "wb") as f:
        return pickle.dump(obj, f)


def flatten_list(summary_ids: List[List]):
    return [x for x in itertools.chain.from_iterable(summary_ids)]


301
302
def save_git_info(folder_path: str) -> None:
    """Save git information to output_dir/git_log.json"""
303
    repo_infos = get_git_info()
304
    save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
305

306
307
308
309
310
311
312
313
314

def save_json(content, path):
    with open(path, "w") as f:
        json.dump(content, f, indent=4)


def load_json(path):
    with open(path) as f:
        return json.load(f)
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329


def get_git_info():
    repo = git.Repo(search_parent_directories=True)
    repo_infos = {
        "repo_id": str(repo),
        "repo_sha": str(repo.head.object.hexsha),
        "repo_branch": str(repo.active_branch),
    }
    return repo_infos


ROUGE_KEYS = ["rouge1", "rouge2", "rougeL"]


330
331
def calculate_rouge(output_lns: List[str], reference_lns: List[str], use_stemmer=True) -> Dict:
    scorer = rouge_scorer.RougeScorer(ROUGE_KEYS, use_stemmer=use_stemmer)
332
333
334
335
336
337
338
    aggregator = scoring.BootstrapAggregator()

    for reference_ln, output_ln in zip(reference_lns, output_lns):
        scores = scorer.score(reference_ln, output_ln)
        aggregator.add_scores(scores)

    result = aggregator.aggregate()
339
    return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()}
340
341


342
343
344
# Utilities for freezing parameters and checking whether they are frozen


345
def freeze_params(model: nn.Module):
346
    """Set requires_grad=False for each of model.parameters()"""
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    for par in model.parameters():
        par.requires_grad = False


def grad_status(model: nn.Module) -> Iterable:
    return (par.requires_grad for par in model.parameters())


def any_requires_grad(model: nn.Module) -> bool:
    return any(grad_status(model))


def assert_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    n_require_grad = sum(lmap(int, model_grads))
    npars = len(model_grads)
    assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"


def assert_not_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    npars = len(model_grads)
    assert any(model_grads), f"none of {npars} weights require grad"
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389


# CLI Parsing utils


def parse_numeric_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float]]:
    """Parse an argv list of unspecified command line args to a dict. Assumes all values are numeric."""
    result = {}
    assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}"
    num_pairs = len(unparsed_args) // 2
    for pair_num in range(num_pairs):
        i = 2 * pair_num
        assert unparsed_args[i].startswith("--")
        try:
            value = int(unparsed_args[i + 1])
        except ValueError:
            value = float(unparsed_args[i + 1])  # this can raise another informative ValueError

        result[unparsed_args[i][2:]] = value
    return result
390
391
392
393
394
395
396


def write_txt_file(ordered_tgt, path):
    f = Path(path).open("w")
    for ln in ordered_tgt:
        f.write(ln + "\n")
        f.flush()