"vscode:/vscode.git/clone" did not exist on "7f556d2e3969490af9a532cf42c4cd47b3ff98d0"
utils.py 8.78 KB
Newer Older
1
2
import itertools
import json
3
import os
4
5
import pickle
from pathlib import Path
6
from typing import Callable, Dict, Iterable, List
7

8
9
import git
import numpy as np
10
import torch
11
from rouge_score import rouge_scorer, scoring
12
from sacrebleu import corpus_bleu
13
14
15
from torch import nn
from torch.utils.data import Dataset, Sampler
from tqdm import tqdm
16

17
18
from transformers import BartTokenizer

19
20
21
22
23
24
25
26
27
28
29

def encode_file(
    tokenizer,
    data_path,
    max_length,
    pad_to_max_length=True,
    return_tensors="pt",
    overwrite_cache=False,
    prefix="",
    tok_name="",
):
30
    extra_kw = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {}
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    cache_path = Path(f"{data_path}_{tok_name}{max_length}.pt")
    if not overwrite_cache and cache_path.exists():
        try:
            examples = torch.load(cache_path)
            assert isinstance(examples, list)
            return examples

        except Exception:
            print(f"failed to load from {cache_path}, retokenizing {data_path}")
    data_path = Path(data_path)

    lns = lmap(str.strip, data_path.open().readlines())
    lns = [prefix + text for text in lns]
    assert lns, f"found empty file at {data_path}"
45
    examples = []
46
    for text in tqdm(lns, desc=f"Tokenizing {data_path.name}"):
47
        tokenized = tokenizer(
48
            [text],
49
            max_length=max_length,
50
            padding="max_length" if pad_to_max_length else None,
51
            truncation=True,
52
            return_tensors=return_tensors,
53
            **extra_kw,
54
        )
55
        assert tokenized.input_ids.shape[1] == max_length
56
57
        examples.append(tokenized)
    torch.save(lmap(dict, examples), cache_path.open("wb"))
58
    return examples
59
60


61
62
def lmap(f: Callable, x: Iterable) -> List:
    """list(map(f, x))"""
63
64
65
    return list(map(f, x))


66
67
68
def calculate_bleu_score(output_lns, refs_lns, **kwargs) -> dict:
    """Uses sacrebleu's corpus_bleu implementation."""
    return {"bleu": corpus_bleu(output_lns, [refs_lns], **kwargs).score}
69
70


71
72
73
74
75
76
77
78
79
80
81
def trim_batch(
    input_ids, pad_token_id, attention_mask=None,
):
    """Remove columns that are populated exclusively by pad_token_id"""
    keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
    if attention_mask is None:
        return input_ids[:, keep_column_mask]
    else:
        return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])


82
83
84
85
class SummarizationDataset(Dataset):
    def __init__(
        self,
        tokenizer,
86
        data_dir,
87
88
89
        type_path="train",
        max_source_length=1024,
        max_target_length=56,
90
91
92
        n_obs=None,
        overwrite_cache=False,
        prefix="",
93
94
        src_lang=None,
        tgt_lang=None,
95
96
    ):
        super().__init__()
97
        # FIXME: the rstrip logic strips all the chars, it seems.
98
        tok_name = tokenizer.__class__.__name__.lower().rstrip("tokenizer")
99
100
        if hasattr(tokenizer, "set_lang") and src_lang is not None:
            tokenizer.set_lang(src_lang)  # HACK: only applies to mbart
101
102
103
104
105
106
107
108
        self.source = encode_file(
            tokenizer,
            os.path.join(data_dir, type_path + ".source"),
            max_source_length,
            overwrite_cache=overwrite_cache,
            prefix=prefix,
            tok_name=tok_name,
        )
109
        tgt_path = os.path.join(data_dir, type_path + ".target")
110
        if hasattr(tokenizer, "set_lang"):
111
112
            assert tgt_lang is not None, "--tgt_lang must be passed to build a translation"
            tokenizer.set_lang(tgt_lang)  # HACK: only applies to mbart
113
114
115
116
117
118
119
        self.target = encode_file(
            tokenizer, tgt_path, max_target_length, overwrite_cache=overwrite_cache, tok_name=tok_name
        )
        if n_obs is not None:
            self.source = self.source[:n_obs]
            self.target = self.target[:n_obs]
        self.pad_token_id = tokenizer.pad_token_id
120
121
122
123
124
125
126

    def __len__(self):
        return len(self.source)

    def __getitem__(self, index):
        source_ids = self.source[index]["input_ids"].squeeze()
        target_ids = self.target[index]["input_ids"].squeeze()
127
        src_mask = self.source[index]["attention_mask"].squeeze()
128
        return {"input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids}
129
130
131

    @staticmethod
    def trim_seq2seq_batch(batch, pad_token_id):
132
133
        y = trim_batch(batch["decoder_input_ids"], pad_token_id)
        source_ids, source_mask = trim_batch(batch["input_ids"], pad_token_id, attention_mask=batch["attention_mask"])
134
135
        return source_ids, source_mask, y

136
137
138
139
140
    def collate_fn(self, batch) -> dict:
        input_ids = torch.stack([x["input_ids"] for x in batch])
        masks = torch.stack([x["attention_mask"] for x in batch])
        target_ids = torch.stack([x["decoder_input_ids"] for x in batch])
        pad_token_id = self.pad_token_id
141
142
        y = trim_batch(target_ids, pad_token_id)
        source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        batch = {"input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y}
        return batch

    @property
    def src_lens(self):  # Can delete?
        return lmap(len, self.source)

    @property
    def tgt_lens(self):
        return lmap(len, self.target)

    def make_sortish_sampler(self, batch_size):
        return SortishSampler(self.source, batch_size)


class SortishSampler(Sampler):
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

    def __init__(self, data, batch_size):
        self.data, self.bs = data, batch_size

    def key(self, i):
        return len(self.data[i])

    def __len__(self) -> int:
        return len(self.data)

    def __iter__(self):
        idxs = np.random.permutation(len(self.data))
        sz = self.bs * 50
        ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
        sort_idx = np.concatenate([sorted(s, key=self.key, reverse=True) for s in ck_idx])
        sz = self.bs
        ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
        max_ck = np.argmax([self.key(ck[0]) for ck in ck_idx])  # find the chunk with the largest key,
        ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0]  # then make sure it goes first.
        sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
        sort_idx = np.concatenate((ck_idx[0], sort_idx))
        return iter(sort_idx)


def use_task_specific_params(model, task):
    # update config with summarization specific params
    task_specific_params = model.config.task_specific_params
    if task_specific_params is not None:
        model.config.update(task_specific_params.get(task, {}))


def pickle_load(path):
    """pickle.load(path)"""
    with open(path, "rb") as f:
        return pickle.load(f)


def pickle_save(obj, path):
    """pickle.dump(obj, path)"""
    with open(path, "wb") as f:
        return pickle.dump(obj, f)


def flatten_list(summary_ids: List[List]):
    return [x for x in itertools.chain.from_iterable(summary_ids)]


207
208
def save_git_info(folder_path: str) -> None:
    """Save git information to output_dir/git_log.json"""
209
    repo_infos = get_git_info()
210
    save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
211

212
213
214
215
216
217
218
219
220

def save_json(content, path):
    with open(path, "w") as f:
        json.dump(content, f, indent=4)


def load_json(path):
    with open(path) as f:
        return json.load(f)
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235


def get_git_info():
    repo = git.Repo(search_parent_directories=True)
    repo_infos = {
        "repo_id": str(repo),
        "repo_sha": str(repo.head.object.hexsha),
        "repo_branch": str(repo.active_branch),
    }
    return repo_infos


ROUGE_KEYS = ["rouge1", "rouge2", "rougeL"]


236
237
def calculate_rouge(output_lns: List[str], reference_lns: List[str], use_stemmer=True) -> Dict:
    scorer = rouge_scorer.RougeScorer(ROUGE_KEYS, use_stemmer=use_stemmer)
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    aggregator = scoring.BootstrapAggregator()

    for reference_ln, output_ln in zip(reference_lns, output_lns):
        scores = scorer.score(reference_ln, output_ln)
        aggregator.add_scores(scores)

    result = aggregator.aggregate()
    return {k: v.mid.fmeasure for k, v in result.items()}


def freeze_params(model: nn.Module):
    for par in model.parameters():
        par.requires_grad = False


def grad_status(model: nn.Module) -> Iterable:
    return (par.requires_grad for par in model.parameters())


def any_requires_grad(model: nn.Module) -> bool:
    return any(grad_status(model))


def assert_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    n_require_grad = sum(lmap(int, model_grads))
    npars = len(model_grads)
    assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"


def assert_not_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    npars = len(model_grads)
    assert any(model_grads), f"none of {npars} weights require grad"