utils.py 13.6 KB
Newer Older
1
2
import itertools
import json
3
import linecache
4
import math
5
import os
6
import pickle
7
from logging import getLogger
8
from pathlib import Path
9
from typing import Callable, Dict, Iterable, List, Union
10

11
12
import git
import numpy as np
13
import torch
14
import torch.distributed as dist
15
from rouge_score import rouge_scorer, scoring
16
from sacrebleu import corpus_bleu
17
18
from torch import nn
from torch.utils.data import Dataset, Sampler
19

20
from transformers import BartTokenizer
21
from transformers.file_utils import cached_property
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
    """From fairseq"""
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target)
    smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
    if ignore_index is not None:
        pad_mask = target.eq(ignore_index)
        nll_loss.masked_fill_(pad_mask, 0.0)
        smooth_loss.masked_fill_(pad_mask, 0.0)
    else:
        nll_loss = nll_loss.squeeze(-1)
        smooth_loss = smooth_loss.squeeze(-1)

    nll_loss = nll_loss.sum()  # mean()? Scared to break other math.
    smooth_loss = smooth_loss.sum()
    eps_i = epsilon / lprobs.size(-1)
    loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
42
    return loss, nll_loss
43
44


45
def encode_line(tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"):
46
    """Only used by LegacyDataset"""
47
    extra_kw = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {}
48
49
50
51
52
53
54
55
    return tokenizer(
        [line],
        max_length=max_length,
        padding="max_length" if pad_to_max_length else None,
        truncation=True,
        return_tensors=return_tensors,
        **extra_kw,
    )
56
57


58
59
def lmap(f: Callable, x: Iterable) -> List:
    """list(map(f, x))"""
60
61
62
    return list(map(f, x))


63
def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict:
64
    """Uses sacrebleu's corpus_bleu implementation."""
65
    return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)}
66
67


68
def trim_batch(
Lysandre's avatar
Lysandre committed
69
70
71
    input_ids,
    pad_token_id,
    attention_mask=None,
72
73
74
75
76
77
78
79
80
):
    """Remove columns that are populated exclusively by pad_token_id"""
    keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
    if attention_mask is None:
        return input_ids[:, keep_column_mask]
    else:
        return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])


81
class AbstractSeq2SeqDataset(Dataset):
82
83
84
    def __init__(
        self,
        tokenizer,
85
        data_dir,
86
87
        max_source_length,
        max_target_length,
88
        type_path="train",
89
        n_obs=None,
90
91
        src_lang=None,
        tgt_lang=None,
92
        prefix="",
93
94
    ):
        super().__init__()
95
96
97
98
99
100
101
        self.src_file = Path(data_dir).joinpath(type_path + ".source")
        self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
        self.src_lens = self.get_char_lens(self.src_file)
        self.max_source_length = max_source_length
        self.max_target_length = max_target_length
        assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
        self.tokenizer = tokenizer
102
103
        self.prefix = prefix if prefix is not None else ""

104
        if n_obs is not None:
105
106
107
108
            self.src_lens = self.src_lens[:n_obs]
        self.pad_token_id = self.tokenizer.pad_token_id
        self.src_lang = src_lang
        self.tgt_lang = tgt_lang
109
        self.add_prefix_space = isinstance(self.tokenizer, BartTokenizer)
110
111

    def __len__(self):
112
113
        return len(self.src_lens)

114
115
116
117
    @staticmethod
    def get_char_lens(data_file):
        return [len(x) for x in Path(data_file).open().readlines()]

118
    def make_sortish_sampler(self, batch_size, distributed=False, **kwargs):
119
        if distributed:
120
            return DistributedSortishSampler(self, batch_size, **kwargs)
121
122
        else:
            return SortishSampler(self.src_lens, batch_size)
123
124
125
126
127
128
129
130
131

    def __getitem__(self, item):
        raise NotImplementedError("You must implement this")

    def collate_fn(self, batch):
        raise NotImplementedError("You must implement this")


class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
132
    def __getitem__(self, index) -> Dict[str, torch.Tensor]:
133
        """Call tokenizer on src and tgt_lines"""
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
        source_inputs = encode_line(self.tokenizer, source_line, self.max_source_length)
        target_inputs = encode_line(self.tokenizer, tgt_line, self.max_target_length)

        source_ids = source_inputs["input_ids"].squeeze()
        target_ids = target_inputs["input_ids"].squeeze()
        src_mask = source_inputs["attention_mask"].squeeze()
        return {
            "input_ids": source_ids,
            "attention_mask": src_mask,
148
            "labels": target_ids,
149
        }
150

151
    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
152
153
        input_ids = torch.stack([x["input_ids"] for x in batch])
        masks = torch.stack([x["attention_mask"] for x in batch])
154
        target_ids = torch.stack([x["labels"] for x in batch])
155
        pad_token_id = self.pad_token_id
156
157
        y = trim_batch(target_ids, pad_token_id)
        source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
158
159
160
        batch = {
            "input_ids": source_ids,
            "attention_mask": source_mask,
161
            "labels": y,
162
        }
163
164
        return batch

165

166
class Seq2SeqDataset(AbstractSeq2SeqDataset):
167
    """A dataset that calls prepare_seq2seq_batch."""
168

169
170
171
172
173
174
    def __getitem__(self, index) -> Dict[str, str]:
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
175
        return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1}
176
177

    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
178
        """Call prepare_seq2seq_batch."""
179
        batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch(
180
181
182
183
184
            [x["src_texts"] for x in batch],
            src_lang=self.src_lang,
            tgt_texts=[x["tgt_texts"] for x in batch],
            tgt_lang=self.tgt_lang,
            max_length=self.max_source_length,
185
            max_target_length=self.max_target_length,
186
187
            return_tensors="pt",
            add_prefix_space=self.add_prefix_space,
188
189
190
        ).data
        batch_encoding["ids"] = torch.tensor([x["id"] for x in batch])
        return batch_encoding
191
192
193
194
195
196
197
198
199
200
201
202


class SortishSampler(Sampler):
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

    def __init__(self, data, batch_size):
        self.data, self.bs = data, batch_size

    def __len__(self) -> int:
        return len(self.data)

    def __iter__(self):
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        return iter(sortish_sampler_indices(self.data, self.bs))


def sortish_sampler_indices(data: List, bs: int) -> np.array:
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

    def key_fn(i):
        return data[i]

    idxs = np.random.permutation(len(data))
    sz = bs * 50
    ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
    sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx])
    sz = bs
    ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
    max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx])  # find the chunk with the largest key,
    ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0]  # then make sure it goes first.
    sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
    sort_idx = np.concatenate((ck_idx[0], sort_idx))
    return sort_idx


class DistributedSortishSampler(Sampler):
    """Copied from torch DistributedSampler"""

228
    def __init__(self, dataset, batch_size, num_replicas=None, rank=None, add_extra_examples=True):
229
230
231
232
233
234
235
236
237
238
239
240
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
241
242
243
244
245
246
        if add_extra_examples:
            self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
            self.total_size = self.num_samples * self.num_replicas
        else:
            self.total_size = len(dataset)
            self.num_samples = len(self.available_indices)
247
        self.batch_size = batch_size
248
        self.add_extra_examples = add_extra_examples
249
250
251
252
253

    def __iter__(self) -> Iterable:
        g = torch.Generator()
        g.manual_seed(self.epoch)

254
        sortish_data = [self.dataset.src_lens[i] for i in self.available_indices]
255
        sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size)
256
        indices = [self.available_indices[i] for i in sortish_indices]
257
258
259
        assert len(indices) == self.num_samples
        return iter(indices)

260
261
    @cached_property
    def available_indices(self) -> np.array:
262
263
264
265
266
267
268
269
270
271
272
273
274
        indices = list(range(len(self.dataset)))
        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size
        # subsample
        available_indices = indices[self.rank : self.total_size : self.num_replicas]
        return available_indices

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch
275
276


277
278
279
logger = getLogger(__name__)


280
def use_task_specific_params(model, task):
281
    """Update config with summarization specific params."""
282
    task_specific_params = model.config.task_specific_params
283

284
    if task_specific_params is not None:
285
286
287
        pars = task_specific_params.get(task, {})
        logger.info(f"using task specific params for {task}: {pars}")
        model.config.update(pars)
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305


def pickle_load(path):
    """pickle.load(path)"""
    with open(path, "rb") as f:
        return pickle.load(f)


def pickle_save(obj, path):
    """pickle.dump(obj, path)"""
    with open(path, "wb") as f:
        return pickle.dump(obj, f)


def flatten_list(summary_ids: List[List]):
    return [x for x in itertools.chain.from_iterable(summary_ids)]


306
307
def save_git_info(folder_path: str) -> None:
    """Save git information to output_dir/git_log.json"""
308
    repo_infos = get_git_info()
309
    save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
310

311
312
313
314
315
316
317
318
319

def save_json(content, path):
    with open(path, "w") as f:
        json.dump(content, f, indent=4)


def load_json(path):
    with open(path) as f:
        return json.load(f)
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334


def get_git_info():
    repo = git.Repo(search_parent_directories=True)
    repo_infos = {
        "repo_id": str(repo),
        "repo_sha": str(repo.head.object.hexsha),
        "repo_branch": str(repo.active_branch),
    }
    return repo_infos


ROUGE_KEYS = ["rouge1", "rouge2", "rougeL"]


335
336
def calculate_rouge(output_lns: List[str], reference_lns: List[str], use_stemmer=True) -> Dict:
    scorer = rouge_scorer.RougeScorer(ROUGE_KEYS, use_stemmer=use_stemmer)
337
338
339
340
341
342
343
    aggregator = scoring.BootstrapAggregator()

    for reference_ln, output_ln in zip(reference_lns, output_lns):
        scores = scorer.score(reference_ln, output_ln)
        aggregator.add_scores(scores)

    result = aggregator.aggregate()
344
    return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()}
345
346


347
348
349
# Utilities for freezing parameters and checking whether they are frozen


350
def freeze_params(model: nn.Module):
351
    """Set requires_grad=False for each of model.parameters()"""
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    for par in model.parameters():
        par.requires_grad = False


def grad_status(model: nn.Module) -> Iterable:
    return (par.requires_grad for par in model.parameters())


def any_requires_grad(model: nn.Module) -> bool:
    return any(grad_status(model))


def assert_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    n_require_grad = sum(lmap(int, model_grads))
    npars = len(model_grads)
    assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"


def assert_not_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    npars = len(model_grads)
    assert any(model_grads), f"none of {npars} weights require grad"
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394


# CLI Parsing utils


def parse_numeric_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float]]:
    """Parse an argv list of unspecified command line args to a dict. Assumes all values are numeric."""
    result = {}
    assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}"
    num_pairs = len(unparsed_args) // 2
    for pair_num in range(num_pairs):
        i = 2 * pair_num
        assert unparsed_args[i].startswith("--")
        try:
            value = int(unparsed_args[i + 1])
        except ValueError:
            value = float(unparsed_args[i + 1])  # this can raise another informative ValueError

        result[unparsed_args[i][2:]] = value
    return result
395
396
397
398
399
400
401


def write_txt_file(ordered_tgt, path):
    f = Path(path).open("w")
    for ln in ordered_tgt:
        f.write(ln + "\n")
        f.flush()